cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 146 results. Next

A196748 Numbers n such that 3 and 5 do not divide swing(n) = A056040(n).

Original entry on oeis.org

0, 1, 2, 20, 24, 54, 60, 61, 62, 72, 73, 74, 504, 510, 511, 512, 560, 564, 1512, 1513, 1514, 1520, 1620, 1621, 1622, 6320, 6324, 6372, 6373, 6374, 6500, 6504, 6552, 6553, 6554, 6560, 13122, 13123, 13124, 13770, 13771, 13772, 13824, 13850, 15072, 15073, 15074
Offset: 1

Views

Author

Peter Luschny, Oct 06 2011

Keywords

Crossrefs

Programs

  • Maple
    # The function Search is defined in A196747.
    A196748_list := n -> Search(n,[3,5]):  # n is a search limit
  • Mathematica
    (* A naive solution *) sf[n_] := n!/Quotient[n, 2]!^2; Select[Range[0, 16000], !Divisible[sf[#], 3] && !Divisible[sf[#], 5] &] (* Jean-François Alcover, Jun 28 2013 *)
  • PARI
    valp(n,p)=my(s); while(n\=p, s+=n); s
    is(n)=valp(n,3)==2*valp(n\2,3) && valp(n,5)==2*valp(n\2,5) \\ Charles R Greathouse IV, Feb 02 2016

A352363 Triangle read by rows. The incomplete Bell transform of the swinging factorials A056040.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 6, 50, 35, 10, 1, 0, 30, 166, 225, 85, 15, 1, 0, 20, 756, 1246, 735, 175, 21, 1, 0, 140, 2932, 7588, 5761, 1960, 322, 28, 1, 0, 70, 11556, 45296, 46116, 20181, 4536, 546, 36, 1
Offset: 0

Views

Author

Peter Luschny, Mar 15 2022

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 0,   1;
[2] 0,   1,     1;
[3] 0,   2,     3,     1;
[4] 0,   6,    11,     6,     1;
[5] 0,   6,    50,    35,    10,     1;
[6] 0,  30,   166,   225,    85,    15,    1;
[7] 0,  20,   756,  1246,   735,   175,   21,   1;
[8] 0, 140,  2932,  7588,  5761,  1960,  322,  28, 1;
[9] 0,  70, 11556, 45296, 46116, 20181, 4536, 546, 36, 1;
		

Crossrefs

Cf. A056040, A352364 (row sums), A352365 (alternating row sums).

Programs

  • Maple
    SwingNumber := n -> n! / iquo(n, 2)!^2:
    for n from 0 to 9 do
    seq(IncompleteBellB(n, k, seq(SwingNumber(j), j = 0..n)), k = 0..n) od;

Formula

Given a sequence s let s|n denote the initial segment s(0), s(1), ..., s(n).
(T(s))(n, k) = IncompleteBellPolynomial(n, k, s|n), where s(n) = n!/floor(n/2)!^2.

A163077 Numbers k such that k$ + 1 is prime. Here '$' denotes the swinging factorial function (A056040).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 9, 14, 15, 24, 27, 31, 38, 44, 45, 49, 67, 76, 92, 99, 119, 124, 133, 136, 139, 144, 168, 171, 185, 265, 291, 332, 368, 428, 501, 631, 680, 689, 696, 765, 789, 890, 1034, 1233, 1384, 1517, 1615, 1634, 1809, 2632, 2762, 3925, 4419, 5108, 5426
Offset: 1

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Examples

			0$ + 1 = 1 + 1 = 2 is prime, so 0 is in the sequence.
		

Crossrefs

Programs

  • Maple
    a := proc(n) select(x -> isprime(A056040(x)+1),[$0..n]) end:
  • Mathematica
    fQ[n_] := PrimeQ[1 + 2^(n - Mod[n, 2])*Product[k^((-1)^(k + 1)), {k, n}]]; Select[ Range[0, 8660], fQ] (* Robert G. Wilson v, Aug 09 2010 *)
  • PARI
    is(k) = ispseudoprime(1+k!/(k\2)!^2); \\ Jinyuan Wang, Mar 22 2020

Extensions

a(45)-a(56) from Robert G. Wilson v, Aug 09 2010

A163078 Numbers k such that k$ - 1 is prime. Here '$' denotes the swinging factorial function (A056040).

Original entry on oeis.org

3, 4, 5, 6, 7, 10, 13, 15, 18, 30, 35, 39, 41, 47, 49, 58, 83, 86, 102, 111, 137, 151, 195, 205, 226, 229, 317, 319, 321, 368, 389, 426, 444, 477, 534, 558, 567, 738, 804, 882, 1063, 1173, 1199, 1206, 1315, 1624, 1678, 1804, 2371, 2507, 2541, 2844, 3084, 3291
Offset: 1

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Examples

			4$ - 1 = 6 - 1 = 5 is prime, so 4 is in the sequence.
		

Crossrefs

Programs

  • Maple
    a := proc(n) select(x -> isprime(A056040(x)-1),[$0..n]) end:
  • Mathematica
    fQ[n_] := PrimeQ[ -1 + 2^(n - Mod[n, 2])*Product[k^((-1)^(k + 1)), {k, n}]]; Select[ Range@ 3647, fQ] (* Robert G. Wilson v, Aug 09 2010 *)
  • PARI
    is(k) = ispseudoprime(k!/(k\2)!^2-1); \\ Jinyuan Wang, Mar 22 2020

Extensions

a(42)-a(54) from Robert G. Wilson v, Aug 09 2010

A163080 Primes p such that p$ - 1 is also prime. Here '$' denotes the swinging factorial function (A056040).

Original entry on oeis.org

3, 5, 7, 13, 41, 47, 83, 137, 151, 229, 317, 389, 1063, 2371, 6101, 7873, 13007, 19603
Offset: 1

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Comments

a(n) are the primes in A163078.

Examples

			3 is prime and 3$ - 1 = 5 is prime, so 3 is in the sequence.
		

Crossrefs

Programs

  • Maple
    a := proc(n) select(isprime,select(k -> isprime(A056040(k)-1),[$0..n])) end:
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; Select[Prime /@ Range[200], PrimeQ[sf[#] - 1] &] (* Jean-François Alcover, Jun 28 2013 *)
  • PARI
    is(k) = isprime(k) && ispseudoprime(k!/(k\2)!^2-1); \\ Jinyuan Wang, Mar 22 2020

Extensions

a(14)-a(18) from Jinyuan Wang, Mar 22 2020

A163083 Primes of the form k$ + 1 which are the greater of twin primes. Here '$' denotes the swinging factorial function (A056040).

Original entry on oeis.org

7, 31, 51481, 1580132580471901
Offset: 1

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Comments

Subsequence of A163075 and of A006512.

Crossrefs

Programs

  • Maple
    a := proc(n) select(s->isprime(s) and isprime(s-2), map(k -> A056040(k)+1,[$4..n])) end:
  • Mathematica
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; Do[ If[ PrimeQ[p = sf[n] + 1] && PrimeQ[p - 2], Print["n = ", n, " p = ", p]], {n, 1, 400}] (* Jean-François Alcover, Jul 29 2013 *)

A163641 The radical of the swinging factorial A056040.

Original entry on oeis.org

1, 1, 2, 6, 6, 30, 10, 70, 70, 210, 42, 462, 462, 6006, 858, 4290, 4290, 72930, 24310, 461890, 92378, 1939938, 176358, 4056234, 1352078, 6760390, 520030, 1560090, 222870, 6463230, 6463230, 200360130
Offset: 0

Views

Author

Peter Luschny, Aug 02 2009

Keywords

Comments

The radical of n$ is the product of the prime numbers dividing n$. It is the largest squarefree divisor of n$, and so also described as the squarefree kernel of n$.

Examples

			11$ = 2772 = 2^2*3^2*7*11. Therefore a(11) = 2*3*7*11 = 462.
		

Crossrefs

Bisections give: A080397 (even part), A163640 (odd part).
Cf. A056040.

Programs

  • Maple
    a := proc(n) local p; mul(p,p=numtheory[factorset](n!/iquo(n,2)!^2)) end:
  • Mathematica
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[0] = 1; a[n_] := Times @@ FactorInteger[sf[n]][[All, 1]]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Jul 26 2013 *)

Formula

a(n) = rad(n$).

A163865 The binomial transform of the swinging factorial (A056040).

Original entry on oeis.org

1, 2, 5, 16, 47, 146, 447, 1380, 4251, 13102, 40343, 124136, 381625, 1172198, 3597401, 11031012, 33798339, 103477590, 316581567, 967900224, 2957316429, 9030317478, 27558851565, 84059345244, 256265811333, 780885245826, 2378410969977, 7241027262280
Offset: 0

Views

Author

Peter Luschny, Aug 06 2009

Keywords

Comments

a(n) = Sum_{k=0..n} binomial(n,k) * k$, where k$ denotes the swinging factorial of k (A056040). The swinging analog to the number of arrangements, the binomial transform of the factorial (A000522).

Crossrefs

Programs

  • Maple
    a := proc(n) local k: add(binomial(n,k)*(k!/iquo(k, 2)!^2),k=0..n) end:
    seq(coeff(series((1-z-4*z^2)/((1+z)*(1-3*z))^(3/2),z,28),z,n),n=0..27); # Peter Luschny, Oct 31 2013
  • Mathematica
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[0] = 1; a[n_] := Sum[Binomial[n, k]*sf[k], {k, 0, n}]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jul 26 2013 *)
    sf[n_] := n!/Quotient[n, 2]!^2; t[n_] := Sum[Binomial[n, k]*sf[k], {k, 0, n}]; Table[t[n], {n,0,50}] (* G. C. Greubel, Aug 06 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-x-4*x^2)/((1+x)*(1-3*x))^(3/2)) \\ G. C. Greubel, Aug 06 2017

Formula

E.g.f.: exp(x)*BesselI(0,2*x)*(1+x). - Peter Luschny, Aug 26 2012
O.g.f.: (1-x-4*x^2)/((1+x)*(1-3*x))^(3/2). - Peter Luschny, Oct 31 2013
a(n) ~ 3^(n - 1/2) * sqrt(n) / (2*sqrt(Pi)). - Vaclav Kotesovec, Nov 27 2017

A196749 Numbers n such that 3, 5 and 7 do not divide swing(n) = A056040(n).

Original entry on oeis.org

0, 1, 2, 20, 1512, 1513, 1514, 6320, 6372, 6373, 6374, 6500, 15120, 15121, 15122, 15302, 40014, 119096754, 119096802, 91547225622, 91550794374
Offset: 1

Views

Author

Peter Luschny, Oct 06 2011

Keywords

Crossrefs

Programs

  • Maple
    # The function Search is defined in A196747.
    A196749_list := n -> Search(n,[3,5,7]):  # n is a search limit
  • PARI
    valp(n,p)=my(s); while(n\=p, s+=n); s
    is(n)=valp(n,3)==2*valp(n\2,3) && valp(n,5)==2*valp(n\2,5) && valp(n,7)==2*valp(n\2,7) \\ Charles R Greathouse IV, Feb 02 2016

A196750 Numbers n such that 3, 5, 7 and 11 do not divide swing(n) = A056040(n).

Original entry on oeis.org

0, 1, 2, 6320
Offset: 1

Views

Author

Peter Luschny, Oct 06 2011

Keywords

Comments

It is conjectured that there are no other terms.

Crossrefs

Programs

  • Maple
    # The function Search is defined in A196747.
    A196750_list := n -> Search(n,[3,5,7,11]):  # n is a search limit
  • PARI
    valp(n,p)=my(s); while(n\=p, s+=n); s
    is(n)=valp(n,3)==2*valp(n\2,3) && valp(n,5)==2*valp(n\2,5) && valp(n,7)==2*valp(n\2,7) && valp(n,11)==2*valp(n\2,11) \\ Charles R Greathouse IV, Feb 02 2016
Previous Showing 21-30 of 146 results. Next