A196748
Numbers n such that 3 and 5 do not divide swing(n) = A056040(n).
Original entry on oeis.org
0, 1, 2, 20, 24, 54, 60, 61, 62, 72, 73, 74, 504, 510, 511, 512, 560, 564, 1512, 1513, 1514, 1520, 1620, 1621, 1622, 6320, 6324, 6372, 6373, 6374, 6500, 6504, 6552, 6553, 6554, 6560, 13122, 13123, 13124, 13770, 13771, 13772, 13824, 13850, 15072, 15073, 15074
Offset: 1
-
# The function Search is defined in A196747.
A196748_list := n -> Search(n,[3,5]): # n is a search limit
-
(* A naive solution *) sf[n_] := n!/Quotient[n, 2]!^2; Select[Range[0, 16000], !Divisible[sf[#], 3] && !Divisible[sf[#], 5] &] (* Jean-François Alcover, Jun 28 2013 *)
-
valp(n,p)=my(s); while(n\=p, s+=n); s
is(n)=valp(n,3)==2*valp(n\2,3) && valp(n,5)==2*valp(n\2,5) \\ Charles R Greathouse IV, Feb 02 2016
A352363
Triangle read by rows. The incomplete Bell transform of the swinging factorials A056040.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 6, 50, 35, 10, 1, 0, 30, 166, 225, 85, 15, 1, 0, 20, 756, 1246, 735, 175, 21, 1, 0, 140, 2932, 7588, 5761, 1960, 322, 28, 1, 0, 70, 11556, 45296, 46116, 20181, 4536, 546, 36, 1
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 2, 3, 1;
[4] 0, 6, 11, 6, 1;
[5] 0, 6, 50, 35, 10, 1;
[6] 0, 30, 166, 225, 85, 15, 1;
[7] 0, 20, 756, 1246, 735, 175, 21, 1;
[8] 0, 140, 2932, 7588, 5761, 1960, 322, 28, 1;
[9] 0, 70, 11556, 45296, 46116, 20181, 4536, 546, 36, 1;
-
SwingNumber := n -> n! / iquo(n, 2)!^2:
for n from 0 to 9 do
seq(IncompleteBellB(n, k, seq(SwingNumber(j), j = 0..n)), k = 0..n) od;
A163077
Numbers k such that k$ + 1 is prime. Here '$' denotes the swinging factorial function (A056040).
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 8, 9, 14, 15, 24, 27, 31, 38, 44, 45, 49, 67, 76, 92, 99, 119, 124, 133, 136, 139, 144, 168, 171, 185, 265, 291, 332, 368, 428, 501, 631, 680, 689, 696, 765, 789, 890, 1034, 1233, 1384, 1517, 1615, 1634, 1809, 2632, 2762, 3925, 4419, 5108, 5426
Offset: 1
0$ + 1 = 1 + 1 = 2 is prime, so 0 is in the sequence.
-
a := proc(n) select(x -> isprime(A056040(x)+1),[$0..n]) end:
-
fQ[n_] := PrimeQ[1 + 2^(n - Mod[n, 2])*Product[k^((-1)^(k + 1)), {k, n}]]; Select[ Range[0, 8660], fQ] (* Robert G. Wilson v, Aug 09 2010 *)
-
is(k) = ispseudoprime(1+k!/(k\2)!^2); \\ Jinyuan Wang, Mar 22 2020
A163078
Numbers k such that k$ - 1 is prime. Here '$' denotes the swinging factorial function (A056040).
Original entry on oeis.org
3, 4, 5, 6, 7, 10, 13, 15, 18, 30, 35, 39, 41, 47, 49, 58, 83, 86, 102, 111, 137, 151, 195, 205, 226, 229, 317, 319, 321, 368, 389, 426, 444, 477, 534, 558, 567, 738, 804, 882, 1063, 1173, 1199, 1206, 1315, 1624, 1678, 1804, 2371, 2507, 2541, 2844, 3084, 3291
Offset: 1
4$ - 1 = 6 - 1 = 5 is prime, so 4 is in the sequence.
-
a := proc(n) select(x -> isprime(A056040(x)-1),[$0..n]) end:
-
fQ[n_] := PrimeQ[ -1 + 2^(n - Mod[n, 2])*Product[k^((-1)^(k + 1)), {k, n}]]; Select[ Range@ 3647, fQ] (* Robert G. Wilson v, Aug 09 2010 *)
-
is(k) = ispseudoprime(k!/(k\2)!^2-1); \\ Jinyuan Wang, Mar 22 2020
A163080
Primes p such that p$ - 1 is also prime. Here '$' denotes the swinging factorial function (A056040).
Original entry on oeis.org
3, 5, 7, 13, 41, 47, 83, 137, 151, 229, 317, 389, 1063, 2371, 6101, 7873, 13007, 19603
Offset: 1
3 is prime and 3$ - 1 = 5 is prime, so 3 is in the sequence.
-
a := proc(n) select(isprime,select(k -> isprime(A056040(k)-1),[$0..n])) end:
-
sf[n_] := n!/Quotient[n, 2]!^2; Select[Prime /@ Range[200], PrimeQ[sf[#] - 1] &] (* Jean-François Alcover, Jun 28 2013 *)
-
is(k) = isprime(k) && ispseudoprime(k!/(k\2)!^2-1); \\ Jinyuan Wang, Mar 22 2020
A163083
Primes of the form k$ + 1 which are the greater of twin primes. Here '$' denotes the swinging factorial function (A056040).
Original entry on oeis.org
7, 31, 51481, 1580132580471901
Offset: 1
-
a := proc(n) select(s->isprime(s) and isprime(s-2), map(k -> A056040(k)+1,[$4..n])) end:
-
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; Do[ If[ PrimeQ[p = sf[n] + 1] && PrimeQ[p - 2], Print["n = ", n, " p = ", p]], {n, 1, 400}] (* Jean-François Alcover, Jul 29 2013 *)
A163641
The radical of the swinging factorial A056040.
Original entry on oeis.org
1, 1, 2, 6, 6, 30, 10, 70, 70, 210, 42, 462, 462, 6006, 858, 4290, 4290, 72930, 24310, 461890, 92378, 1939938, 176358, 4056234, 1352078, 6760390, 520030, 1560090, 222870, 6463230, 6463230, 200360130
Offset: 0
11$ = 2772 = 2^2*3^2*7*11. Therefore a(11) = 2*3*7*11 = 462.
-
a := proc(n) local p; mul(p,p=numtheory[factorset](n!/iquo(n,2)!^2)) end:
-
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[0] = 1; a[n_] := Times @@ FactorInteger[sf[n]][[All, 1]]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Jul 26 2013 *)
A163865
The binomial transform of the swinging factorial (A056040).
Original entry on oeis.org
1, 2, 5, 16, 47, 146, 447, 1380, 4251, 13102, 40343, 124136, 381625, 1172198, 3597401, 11031012, 33798339, 103477590, 316581567, 967900224, 2957316429, 9030317478, 27558851565, 84059345244, 256265811333, 780885245826, 2378410969977, 7241027262280
Offset: 0
-
a := proc(n) local k: add(binomial(n,k)*(k!/iquo(k, 2)!^2),k=0..n) end:
seq(coeff(series((1-z-4*z^2)/((1+z)*(1-3*z))^(3/2),z,28),z,n),n=0..27); # Peter Luschny, Oct 31 2013
-
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[0] = 1; a[n_] := Sum[Binomial[n, k]*sf[k], {k, 0, n}]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jul 26 2013 *)
sf[n_] := n!/Quotient[n, 2]!^2; t[n_] := Sum[Binomial[n, k]*sf[k], {k, 0, n}]; Table[t[n], {n,0,50}] (* G. C. Greubel, Aug 06 2017 *)
-
x='x+O('x^50); Vec((1-x-4*x^2)/((1+x)*(1-3*x))^(3/2)) \\ G. C. Greubel, Aug 06 2017
A196749
Numbers n such that 3, 5 and 7 do not divide swing(n) = A056040(n).
Original entry on oeis.org
0, 1, 2, 20, 1512, 1513, 1514, 6320, 6372, 6373, 6374, 6500, 15120, 15121, 15122, 15302, 40014, 119096754, 119096802, 91547225622, 91550794374
Offset: 1
-
# The function Search is defined in A196747.
A196749_list := n -> Search(n,[3,5,7]): # n is a search limit
-
valp(n,p)=my(s); while(n\=p, s+=n); s
is(n)=valp(n,3)==2*valp(n\2,3) && valp(n,5)==2*valp(n\2,5) && valp(n,7)==2*valp(n\2,7) \\ Charles R Greathouse IV, Feb 02 2016
A196750
Numbers n such that 3, 5, 7 and 11 do not divide swing(n) = A056040(n).
Original entry on oeis.org
-
# The function Search is defined in A196747.
A196750_list := n -> Search(n,[3,5,7,11]): # n is a search limit
-
valp(n,p)=my(s); while(n\=p, s+=n); s
is(n)=valp(n,3)==2*valp(n\2,3) && valp(n,5)==2*valp(n\2,5) && valp(n,7)==2*valp(n\2,7) && valp(n,11)==2*valp(n\2,11) \\ Charles R Greathouse IV, Feb 02 2016
Comments