A214282
Largest Euler characteristic of a downset on an n-dimensional cube.
Original entry on oeis.org
1, 1, 1, 3, 6, 10, 15, 35, 70, 126, 210, 462, 924, 1716, 3003, 6435, 12870, 24310, 43758, 92378, 184756, 352716, 646646, 1352078, 2704156, 5200300, 9657700, 20058300, 40116600, 77558760, 145422675, 300540195, 601080390, 1166803110, 2203961430, 4537567650, 9075135300, 17672631900
Offset: 1
G.f. = x + x^2 + x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 15*x^7 + 35*x^8 + ...
-
a214282 n = a007318 (n - 1) (a004524 (n - 1))
-- Reinhard Zumkeller, Jul 14 2012
-
Table[{Binomial[n - 1, n/2], Binomial[n, n/2], Binomial[n + 1, n/2 + 1], Binomial[n + 2, n/2 + 2]}, {n, 0, 28, 4}] (* Alonso del Arte, Jul 09 2012 *)
-
a(n)=binomial(n-1,if(n%2,(n+1)\4*2,n/2)) \\ Charles R Greathouse IV, Jul 09 2012
-
{a(n) = if( n<1, 0, vecmax( Vec((1 - x)^(n-1))))}; /* Michael Somos, Apr 21 2014 */
-
from math import comb
def A214282(n): return comb(n-1, (n+1>>1)&(-1^(n&1))) # Chai Wah Wu, Jan 31 2024
A274706
Irregular triangle read by rows. T(n,k) (n >= 0) is a statistic on orbital systems over n sectors: the number of orbitals which have an integral whose absolute value is k.
Original entry on oeis.org
1, 1, 0, 2, 0, 4, 2, 2, 0, 2, 0, 2, 6, 4, 6, 4, 4, 4, 2, 0, 6, 0, 6, 0, 4, 0, 2, 0, 2, 6, 24, 16, 20, 14, 16, 12, 8, 6, 8, 4, 4, 2, 8, 0, 14, 0, 14, 0, 10, 0, 10, 0, 6, 0, 4, 0, 2, 0, 2, 36, 52, 68, 48, 64, 48, 48, 40, 44, 32, 36, 24, 22, 16, 16, 8, 10, 8, 4, 4, 2
Offset: 0
The length of row n is 1+floor(n^2//4).
The triangle begins:
[n] [k=0,1,2,...] [row sum]
[0] [1] 1
[1] [1] 1
[2] [0, 2] 2
[3] [0, 4, 2] 6
[4] [2, 0, 2, 0, 2] 6
[5] [6, 4, 6, 4, 4, 4, 2] 30
[6] [0, 6, 0, 6, 0, 4, 0, 2, 0, 2] 20
[7] [6, 24, 16, 20, 14, 16, 12, 8, 6, 8, 4, 4, 2] 140
[8] [8, 0, 14, 0, 14, 0, 10, 0, 10, 0, 6, 0, 4, 0, 2, 0, 2] 70
T(5, 4) = 4 because the integral of four orbitals have the absolute value 4:
Integral([-1, -1, 1, 1, 0]) = -4, Integral([0, -1, -1, 1, 1]) = -4,
Integral([0, 1, 1, -1, -1]) = 4, Integral([1, 1, -1, -1, 0]) = 4.
-
from itertools import accumulate
# Brute force counting
def unit_orbitals(n):
sym_range = [i for i in range(-n+1, n, 2)]
for c in Combinations(sym_range, n):
P = Permutations([sgn(v) for v in c])
for p in P: yield p
def orbital_integral(n):
if n == 0: return [1]
S = [0]*(1+floor(n^2//4))
for u in unit_orbitals(n):
L = list(accumulate(accumulate(u)))
S[abs(L[-1])] += 1
return S
for n in (0..8): print(orbital_integral(n))
A274710
A statistic on orbital systems over n sectors: the number of orbitals which make k turns.
Original entry on oeis.org
1, 1, 0, 2, 0, 0, 6, 0, 2, 2, 2, 0, 0, 6, 12, 12, 0, 2, 4, 8, 4, 2, 0, 0, 6, 24, 52, 40, 18, 0, 2, 6, 18, 18, 18, 6, 2, 0, 0, 6, 36, 120, 180, 180, 84, 24, 0, 2, 8, 32, 48, 72, 48, 32, 8, 2, 0, 0, 6, 48, 216, 480, 744, 672, 432, 144, 30, 0, 2, 10, 50, 100, 200, 200, 200, 100, 50, 10, 2
Offset: 0
Triangle read by rows, n>=0. The length of row n is n for n>=1.
[n] [k=0,1,2,...] [row sum]
[0] [1] 1
[1] [1] 1
[2] [0, 2] 2
[3] [0, 0, 6] 6
[4] [0, 2, 2, 2] 6
[5] [0, 0, 6, 12, 12] 30
[6] [0, 2, 4, 8, 4, 2] 20
[7] [0, 0, 6, 24, 52, 40, 18] 140
[8] [0, 2, 6, 18, 18, 18, 6, 2] 70
[9] [0, 0, 6, 36, 120, 180, 180, 84, 24] 630
T(5,2) = 6 because the six orbitals [-1, -1, 0, 1, 1], [-1, -1, 1, 1, 0], [0, -1, -1, 1, 1], [0, 1, 1, -1, -1], [1, 1, -1, -1, 0], [1, 1, 0, -1, -1] make 2 turns.
A274878
A statistic on orbital systems over n sectors: the number of orbitals with span k.
Original entry on oeis.org
1, 1, 0, 2, 0, 6, 0, 2, 4, 0, 10, 20, 0, 2, 12, 6, 0, 14, 84, 42, 0, 2, 28, 32, 8, 0, 18, 252, 288, 72, 0, 2, 60, 120, 60, 10, 0, 22, 660, 1320, 660, 110, 0, 2, 124, 390, 300, 96, 12, 0, 26, 1612, 5070, 3900, 1248, 156, 0, 2, 252, 1176, 1260, 588, 140, 14
Offset: 0
Triangle read by rows, n>=0. The length of row n is floor((n+2)/2).
[ n] [k=0,1,2,...] [row sum]
[ 0] [1] 1
[ 1] [1] 1
[ 2] [0, 2] 2
[ 3] [0, 6] 6
[ 4] [0, 2, 4] 6
[ 5] [0, 10, 20] 30
[ 6] [0, 2, 12, 6] 20
[ 7] [0, 14, 84, 42] 140
[ 8] [0, 2, 28, 32, 8] 70
[ 9] [0, 18, 252, 288, 72] 630
[10] [0, 2, 60, 120, 60, 10] 252
T(6, 3) = 6 because the span of the following six orbitals is 3:
[-1, -1, -1, 1, 1, 1], [-1, -1, 1, 1, 1, -1], [-1, 1, 1, 1, -1, -1],
[1, -1, -1, -1, 1, 1], [1, 1, -1, -1, -1, 1], [1, 1, 1, -1, -1, -1].
A274879
A statistic on orbital systems over n sectors: the number of orbitals with k returns.
Original entry on oeis.org
1, 1, 2, 2, 4, 2, 4, 6, 12, 12, 4, 8, 8, 20, 40, 48, 32, 10, 20, 24, 16, 70, 140, 180, 160, 80, 28, 56, 72, 64, 32, 252, 504, 672, 672, 480, 192, 84, 168, 224, 224, 160, 64, 924, 1848, 2520, 2688, 2240, 1344, 448, 264, 528, 720, 768, 640, 384, 128
Offset: 0
Triangle read by rows, n>=0. The length of row n is floor((n+1)/2) for n>=1.
[ n] [k=0,1,2,...] [row sum]
[ 0] [1] 1
[ 1] [1] 1
[ 2] [2] 2
[ 3] [2, 4] 6
[ 4] [2, 4] 6
[ 5] [6, 12, 12] 30
[ 6] [4, 8, 8] 20
[ 7] [20, 40, 48, 32] 140
[ 8] [10, 20, 24, 16] 70
[ 9] [70, 140, 180, 160, 80] 630
[10] [28, 56, 72, 64, 32] 252
[11] [252, 504, 672, 672, 480, 192] 2772
T(6,0) = 4 because the following 4 orbitals stay above or below the central
circle: [-1, -1, -1, 1, 1, 1], [-1, -1, 1, -1, 1, 1], [1, 1, -1, 1, -1, -1],
[1, 1, 1, -1, -1, -1].
-
# uses[unit_orbitals from A274709]
from itertools import accumulate
# Brute force counting
def orbital_returns(n):
if n == 0: return [1]
S = [0]*((n+1)//2)
for u in unit_orbitals(n):
L = list(accumulate(u))
Z = len(list(filter(lambda z: z == 0, L)))
S[Z-1] += 1 # exclude origin
return S
for n in (0..10): print(orbital_returns(n))
A274880
A statistic on orbital systems over n sectors: the number of orbitals with k restarts.
Original entry on oeis.org
1, 1, 2, 5, 1, 4, 2, 18, 11, 1, 10, 8, 2, 65, 57, 17, 1, 28, 28, 12, 2, 238, 252, 116, 23, 1, 84, 96, 54, 16, 2, 882, 1050, 615, 195, 29, 1, 264, 330, 220, 88, 20, 2, 3300, 4257, 2915, 1210, 294, 35, 1, 858, 1144, 858, 416, 130, 24, 2, 12441, 17017, 13013, 6461, 2093, 413, 41, 1
Offset: 0
Triangle read by rows, n>=0. The length of row n is floor((n+1)/2) for n>=1.
[n] [k=0,1,2,...] [row sum]
[ 0] [1] 1
[ 1] [1] 1
[ 2] [2] 2
[ 3] [5, 1] 6
[ 4] [4, 2] 6
[ 5] [18, 11, 1] 30
[ 6] [10, 8, 2] 20
[ 7] [65, 57, 17, 1] 140
[ 8] [28, 28, 12, 2] 70
[ 9] [238, 252, 116, 23, 1] 630
[10] [84, 96, 54, 16, 2] 252
[11] [882, 1050, 615, 195, 29, 1] 2772
T(6, 2) = 2 because there are two orbitals over 6 segments which have 2 ascents:
[-1, 1, 1, -1, 1, -1] and [1, -1, 1, -1, 1, -1].
A274881
A statistic on orbital systems over n sectors: the number of orbitals which have an ascent of length k.
Original entry on oeis.org
1, 1, 0, 2, 0, 6, 0, 3, 3, 0, 18, 12, 0, 4, 12, 4, 0, 40, 80, 20, 0, 5, 40, 20, 5, 0, 75, 375, 150, 30, 0, 6, 120, 90, 30, 6, 0, 126, 1470, 882, 252, 42, 0, 7, 350, 371, 147, 42, 7, 0, 196, 5292, 4508, 1568, 392, 56, 0, 8, 1008, 1456, 672, 224, 56, 8
Offset: 0
Triangle read by rows, n>=0. The length of row n is floor((n+2)/2).
[ n] [k=0,1,2,...] [row sum]
[ 0] [1] 1
[ 1] [1] 1
[ 2] [0, 2] 2
[ 3] [0, 6] 6
[ 4] [0, 3, 3] 6
[ 5] [0, 18, 12] 30
[ 6] [0, 4, 12, 4] 20
[ 7] [0, 40, 80, 20] 140
[ 8] [0, 5, 40, 20, 5] 70
[ 9] [0, 75, 375, 150, 30] 630
[10] [0, 6, 120, 90, 30, 6] 252
[11] [0, 126, 1470, 882, 252, 42] 2772
[12] [0, 7, 350, 371, 147, 42, 7] 924
T(6,3) = 4 because four orbitals over six sectors have a maximal up-run of length 3.
[-1,-1,-1,1,1,1], [-1,-1,1,1,1,-1], [-1,1,1,1,-1,-1], [1,1,1,-1,-1,-1].
A248682
Decimal expansion of Sum_{n >= 0} (floor(n/2)!)^2/n!.
Original entry on oeis.org
2, 9, 4, 5, 5, 9, 9, 4, 3, 4, 8, 7, 4, 8, 6, 0, 3, 1, 1, 6, 3, 9, 1, 8, 0, 6, 7, 3, 4, 5, 9, 6, 9, 3, 9, 8, 4, 2, 5, 2, 5, 0, 3, 3, 3, 1, 6, 3, 7, 9, 9, 1, 6, 2, 2, 7, 2, 8, 7, 8, 6, 6, 0, 9, 2, 3, 3, 8, 8, 7, 2, 7, 2, 1, 1, 2, 3, 1, 4, 5, 6, 3, 2, 7, 4, 7
Offset: 1
2.94559943487486031163918067345969398425250...
-
RealDigits[Sum[(Floor[n/2])!^2/n!, {n, 0, 400}], 10, 111][[1]]
RealDigits[4/3+8Pi/Sqrt[243],10,111][[1]] (* Robert G. Wilson v, Feb 10 2016 *)
-
suminf(n=0, ((n\2)!)^2/n!) \\ Michel Marcus, Feb 11 2016
A274708
A statistic on orbital systems over n sectors: the number of orbitals with k peaks.
Original entry on oeis.org
1, 1, 2, 4, 2, 4, 2, 12, 15, 3, 10, 8, 2, 38, 68, 30, 4, 26, 30, 12, 2, 121, 272, 183, 49, 5, 70, 104, 60, 16, 2, 384, 1026, 912, 372, 72, 6, 192, 350, 260, 100, 20, 2, 1214, 3727, 4095, 2220, 650, 99, 7, 534, 1152, 1050, 520, 150, 24, 2, 3822, 13200, 17178, 11600, 4510, 1032, 130, 8
Offset: 0
Triangle read by rows, n>=0. The length of row n is floor((n+1)/2) for n>=1.
[ n] [k=0,1,2,...] [row sum]
[ 0] [ 1] 1
[ 1] [ 1] 1
[ 2] [ 2] 2
[ 3] [ 4, 2] 6
[ 4] [ 4, 2] 6
[ 5] [ 12, 15, 3] 30
[ 6] [ 10, 8, 2] 20
[ 7] [ 38, 68, 30, 4] 140
[ 8] [ 26, 30, 12, 2] 70
[ 9] [121, 272, 183, 49, 5] 630
[10] [ 70, 104, 60, 16, 2] 252
[11] [384, 1026, 912, 372, 72, 6] 2772
[12] [192, 350, 260, 100, 20, 2] 924
T(6, 2) = 2 because the two orbitals [-1, 1, -1, 1, -1, 1] and [1, -1, 1, -1, 1, -1] have 2 peaks.
A211226
Triangular array: T(n,k) = f(n)/(f(k)*f(n-k)), where f(n) = (floor(n/2))!.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 6, 3, 3, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 4, 4, 12, 6, 12, 4, 4, 1, 1, 1, 4, 4, 6, 6, 4, 4, 1, 1, 1, 5, 5, 20, 10, 30, 10, 20, 5, 5, 1, 1, 1, 5, 5, 10, 10, 10, 10, 5, 5, 1, 1, 1, 6, 6, 30, 15
Offset: 0
Triangle begins
.n\k.|....0....1....2....3....4....5....6....7....8....9...10...11
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
..0..|....1
..1..|....1....1
..2..|....1....1....1
..3..|....1....1....1....1
..4..|....1....2....2....2....1
..5..|....1....1....2....2....1....1
..6..|....1....3....3....6....3....3....1
..7..|....1....1....3....3....3....3....1....1
..8..|....1....4....4...12....6...12....4....4....1
..9..|....1....1....4....4....6....6....4....4....1....1
.10..|....1....5....5...20...10...30...10...20....5....5....1
.11..|....1....1....5....5...10...10...10...10....5....5....1....1
...
Comments