cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 146 results. Next

A214282 Largest Euler characteristic of a downset on an n-dimensional cube.

Original entry on oeis.org

1, 1, 1, 3, 6, 10, 15, 35, 70, 126, 210, 462, 924, 1716, 3003, 6435, 12870, 24310, 43758, 92378, 184756, 352716, 646646, 1352078, 2704156, 5200300, 9657700, 20058300, 40116600, 77558760, 145422675, 300540195, 601080390, 1166803110, 2203961430, 4537567650, 9075135300, 17672631900
Offset: 1

Views

Author

Terence Tao, Jul 09 2012

Keywords

Comments

An m-downset is a set of subsets of 1..m such that if S is in the set, so are all subsets of S. The Euler characteristic of a downset is the number of sets in the downset with an even cardinality, minus the number with an odd cardinality.

Examples

			G.f. = x + x^2 + x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 15*x^7 + 35*x^8 + ...
		

Crossrefs

Cf. A214283.

Programs

  • Haskell
    a214282 n = a007318 (n - 1) (a004524 (n - 1))
    -- Reinhard Zumkeller, Jul 14 2012
    
  • Mathematica
    Table[{Binomial[n - 1, n/2], Binomial[n, n/2], Binomial[n + 1, n/2 + 1], Binomial[n + 2, n/2 + 2]}, {n, 0, 28, 4}] (* Alonso del Arte, Jul 09 2012 *)
  • PARI
    a(n)=binomial(n-1,if(n%2,(n+1)\4*2,n/2)) \\ Charles R Greathouse IV, Jul 09 2012
    
  • PARI
    {a(n) = if( n<1, 0, vecmax( Vec((1 - x)^(n-1))))}; /* Michael Somos, Apr 21 2014 */
    
  • Python
    from math import comb
    def A214282(n): return comb(n-1, (n+1>>1)&(-1^(n&1))) # Chai Wah Wu, Jan 31 2024

Formula

a(n) = binomial(n - 1, n/2) when n is even, a(n) = binomial(n - 1, (n + 1)/2) when n is 3 mod 4, and a(n) = binomial(n - 1, (n - 1)/2) when n is 1 mod 4.
a(2n) = A001700(n-1). a(4n+1) = A001448(n). a(4n+3) = A186231(n).
a(n) = A214283(n) + A001405(n). - Reinhard Zumkeller, Jul 14 2012
a(n) = A007318(n-1, A004524(n-1)). - Reinhard Zumkeller, Jul 14 2012
a(n+1) = A000108([n/2])*A215495(n). - M. F. Hasler, Aug 25 2012
A214282(n) - A214283(n) is A056040(n) if n is even and A056040(n)/((n+1)/2) otherwise. - Peter Luschny, Jul 08 2016

A274706 Irregular triangle read by rows. T(n,k) (n >= 0) is a statistic on orbital systems over n sectors: the number of orbitals which have an integral whose absolute value is k.

Original entry on oeis.org

1, 1, 0, 2, 0, 4, 2, 2, 0, 2, 0, 2, 6, 4, 6, 4, 4, 4, 2, 0, 6, 0, 6, 0, 4, 0, 2, 0, 2, 6, 24, 16, 20, 14, 16, 12, 8, 6, 8, 4, 4, 2, 8, 0, 14, 0, 14, 0, 10, 0, 10, 0, 6, 0, 4, 0, 2, 0, 2, 36, 52, 68, 48, 64, 48, 48, 40, 44, 32, 36, 24, 22, 16, 16, 8, 10, 8, 4, 4, 2
Offset: 0

Views

Author

Peter Luschny, Jul 10 2016

Keywords

Comments

For the combinatorial definitions see A232500. The absolute integral of an orbital w over n sectors is abs(Sum_{k=1..n} Sum_{i=1..k} w(i)) where w(i) are the jumps of the orbital represented by -1, 0, 1.
An orbital is balanced if its integral is 0 (A241810).

Examples

			The length of row n is 1+floor(n^2//4).
The triangle begins:
  [n] [k=0,1,2,...] [row sum]
  [0] [1] 1
  [1] [1] 1
  [2] [0, 2] 2
  [3] [0, 4, 2] 6
  [4] [2, 0, 2, 0, 2] 6
  [5] [6, 4, 6, 4, 4, 4, 2] 30
  [6] [0, 6, 0, 6, 0, 4, 0, 2, 0, 2] 20
  [7] [6, 24, 16, 20, 14, 16, 12, 8, 6, 8, 4, 4, 2] 140
  [8] [8, 0, 14, 0, 14, 0, 10, 0, 10, 0, 6, 0, 4, 0, 2, 0, 2] 70
T(5, 4) = 4 because the integral of four orbitals have the absolute value 4:
  Integral([-1, -1, 1, 1, 0]) = -4, Integral([0, -1, -1, 1, 1]) = -4,
  Integral([0, 1, 1, -1, -1]) = 4, Integral([1, 1, -1, -1, 0]) = 4.
		

Crossrefs

Cf. A056040 (row sum), A232500, A241810 (col. 0), A242087.
Other orbital statistics: A241477 (first zero crossing), A274708 (number of peaks), A274709 (max. height), A274710 (number of turns), A274878 (span), A274879 (returns), A274880 (restarts), A274881 (ascent).

Programs

  • Sage
    from itertools import accumulate
    # Brute force counting
    def unit_orbitals(n):
        sym_range = [i for i in range(-n+1, n, 2)]
        for c in Combinations(sym_range, n):
            P = Permutations([sgn(v) for v in c])
            for p in P: yield p
    def orbital_integral(n):
        if n == 0: return [1]
        S = [0]*(1+floor(n^2//4))
        for u in unit_orbitals(n):
            L = list(accumulate(accumulate(u)))
            S[abs(L[-1])] += 1
        return S
    for n in (0..8): print(orbital_integral(n))

A274710 A statistic on orbital systems over n sectors: the number of orbitals which make k turns.

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 6, 0, 2, 2, 2, 0, 0, 6, 12, 12, 0, 2, 4, 8, 4, 2, 0, 0, 6, 24, 52, 40, 18, 0, 2, 6, 18, 18, 18, 6, 2, 0, 0, 6, 36, 120, 180, 180, 84, 24, 0, 2, 8, 32, 48, 72, 48, 32, 8, 2, 0, 0, 6, 48, 216, 480, 744, 672, 432, 144, 30, 0, 2, 10, 50, 100, 200, 200, 200, 100, 50, 10, 2
Offset: 0

Views

Author

Peter Luschny, Jul 10 2016

Keywords

Comments

The definition of an orbital system is given in A232500 (see also the illustration there). The number of orbitals over n sectors is counted by the swinging factorial A056040.
A 'turn' of an orbital w takes place where signum(w[i]) is not equal to signum(w[i+1]).
A152659 is a subtriangle.

Examples

			Triangle read by rows, n>=0. The length of row n is n for n>=1.
[n] [k=0,1,2,...]                      [row sum]
[0] [1]                                    1
[1] [1]                                    1
[2] [0, 2]                                 2
[3] [0, 0, 6]                              6
[4] [0, 2, 2,  2]                          6
[5] [0, 0, 6, 12,  12]                    30
[6] [0, 2, 4,  8,   4,   2]               20
[7] [0, 0, 6, 24,  52,  40,  18]         140
[8] [0, 2, 6, 18,  18,  18,   6,  2]      70
[9] [0, 0, 6, 36, 120, 180, 180, 84, 24] 630
T(5,2) = 6 because the six orbitals [-1, -1, 0, 1, 1], [-1, -1, 1, 1, 0], [0, -1, -1, 1, 1], [0, 1, 1, -1, -1], [1, 1, -1, -1, 0], [1, 1, 0, -1, -1] make 2 turns.
		

Crossrefs

Cf. A056040 (row sum), A152659, A232500.
Other orbital statistics: A241477 (first zero crossing), A274706 (absolute integral), A274708 (number of peaks), A274709 (max. height), A274878 (span), A274879 (returns), A274880 (restarts), A274881 (ascent).

Programs

  • Sage
    # uses[unit_orbitals from A274709]
    # Brute force counting
    def orbital_turns(n):
        if n == 0: return [1]
        S = [0]*(n)
        for u in unit_orbitals(n):
            L = sum(0 if sgn(u[i]) == sgn(u[i+1]) else 1 for i in (0..n-2))
            S[L] += 1
        return S
    for n in (0..12): print(orbital_turns(n))

Formula

For even n>0: T(n,k) = 2*C(n/2-1,(k-1+mod(k-1,2))/2)*C(n/2-1,(k-1-mod(k-1,2))/2) for k=0..n-1 (from A152659).

A274878 A statistic on orbital systems over n sectors: the number of orbitals with span k.

Original entry on oeis.org

1, 1, 0, 2, 0, 6, 0, 2, 4, 0, 10, 20, 0, 2, 12, 6, 0, 14, 84, 42, 0, 2, 28, 32, 8, 0, 18, 252, 288, 72, 0, 2, 60, 120, 60, 10, 0, 22, 660, 1320, 660, 110, 0, 2, 124, 390, 300, 96, 12, 0, 26, 1612, 5070, 3900, 1248, 156, 0, 2, 252, 1176, 1260, 588, 140, 14
Offset: 0

Views

Author

Peter Luschny, Jul 10 2016

Keywords

Comments

The definition of an orbital system is given in A232500 (see also the illustration there). The number of orbitals over n sectors is counted by the swinging factorial A056040.
The 'span' of an orbital w is the difference between the highest and the lowest level of the orbital system touched by w.

Examples

			Triangle read by rows, n>=0. The length of row n is floor((n+2)/2).
[ n] [k=0,1,2,...]          [row sum]
[ 0] [1]                        1
[ 1] [1]                        1
[ 2] [0, 2]                     2
[ 3] [0, 6]                     6
[ 4] [0, 2, 4]                  6
[ 5] [0, 10, 20]               30
[ 6] [0, 2, 12, 6]             20
[ 7] [0, 14, 84, 42]          140
[ 8] [0, 2, 28, 32, 8]         70
[ 9] [0, 18, 252, 288, 72]    630
[10] [0, 2, 60, 120, 60, 10]  252
T(6, 3) = 6 because the span of the following six orbitals is 3:
[-1, -1, -1, 1, 1, 1], [-1, -1, 1, 1, 1, -1], [-1, 1, 1, 1, -1, -1],
[1, -1, -1, -1, 1, 1], [1, 1, -1, -1, -1, 1], [1, 1, 1, -1, -1, -1].
		

Crossrefs

Cf. A056040 (row sum), A232500.
Other orbital statistics: A241477 (first zero crossing), A274706 (absolute integral), A274708 (number of peaks), A274709 (max. height), A274710 (number of turns), A274879 (returns), A274880 (restarts), A274881 (ascent).

Programs

  • Sage
    # uses[unit_orbitals from A274709]
    from itertools import accumulate
    # Brute force counting.
    def orbital_span(n):
        if n == 0: return [1]
        S = [0]*((n+2)//2)
        for u in unit_orbitals(n):
            L = list(accumulate(u))
            S[max(L) - min(L)] += 1
        return S
    for n in (0..10): print(orbital_span(n))

A274879 A statistic on orbital systems over n sectors: the number of orbitals with k returns.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 4, 6, 12, 12, 4, 8, 8, 20, 40, 48, 32, 10, 20, 24, 16, 70, 140, 180, 160, 80, 28, 56, 72, 64, 32, 252, 504, 672, 672, 480, 192, 84, 168, 224, 224, 160, 64, 924, 1848, 2520, 2688, 2240, 1344, 448, 264, 528, 720, 768, 640, 384, 128
Offset: 0

Views

Author

Peter Luschny, Jul 11 2016

Keywords

Comments

The definition of an orbital system is given in A232500 (see also the illustration there). The number of orbitals over n sectors is counted by the swinging factorial A056040.
When a segment of an orbital starts at a point on the central circle this point is called a 'return' of the orbital if it is not the origin.
If an orbital touches the central circle only in the origin it is called a prime orbital. Column 0 counts the prime orbitals over n sectors.
A108747 is a subtriangle.

Examples

			Triangle read by rows, n>=0. The length of row n is floor((n+1)/2) for n>=1.
[ n] [k=0,1,2,...] [row sum]
[ 0] [1] 1
[ 1] [1] 1
[ 2] [2] 2
[ 3] [2, 4] 6
[ 4] [2, 4] 6
[ 5] [6, 12, 12] 30
[ 6] [4, 8, 8] 20
[ 7] [20, 40, 48, 32] 140
[ 8] [10, 20, 24, 16] 70
[ 9] [70, 140, 180, 160, 80] 630
[10] [28, 56, 72, 64, 32] 252
[11] [252, 504, 672, 672, 480, 192] 2772
T(6,0) = 4 because the following 4 orbitals stay above or below the central
circle: [-1, -1, -1, 1, 1, 1], [-1, -1, 1, -1, 1, 1], [1, 1, -1, 1, -1, -1],
[1, 1, 1, -1, -1, -1].
		

Crossrefs

Cf. A056040 (row sum), A108747, A232500, A241543 (col. 0).
Other orbital statistics: A241477 (first zero crossing), A274706 (absolute integral), A274708 (peaks), A274709 (max. height), A274710 (number of turns), A274878 (span), A274880 (restarts), A274881 (ascent).

Programs

  • Sage
    # uses[unit_orbitals from A274709]
    from itertools import accumulate
    # Brute force counting
    def orbital_returns(n):
        if n == 0: return [1]
        S = [0]*((n+1)//2)
        for u in unit_orbitals(n):
            L = list(accumulate(u))
            Z = len(list(filter(lambda z: z == 0, L)))
            S[Z-1] += 1  # exclude origin
        return S
    for n in (0..10): print(orbital_returns(n))

Formula

For even n>0: T(n,k) = 2^(k+1)*(k+1)*binomial(n-k-1,n/2)/(n-k-1) for k=0..n/2-1 (from A108747).

A274880 A statistic on orbital systems over n sectors: the number of orbitals with k restarts.

Original entry on oeis.org

1, 1, 2, 5, 1, 4, 2, 18, 11, 1, 10, 8, 2, 65, 57, 17, 1, 28, 28, 12, 2, 238, 252, 116, 23, 1, 84, 96, 54, 16, 2, 882, 1050, 615, 195, 29, 1, 264, 330, 220, 88, 20, 2, 3300, 4257, 2915, 1210, 294, 35, 1, 858, 1144, 858, 416, 130, 24, 2, 12441, 17017, 13013, 6461, 2093, 413, 41, 1
Offset: 0

Views

Author

Peter Luschny, Jul 11 2016

Keywords

Comments

The definition of an orbital system is given in A232500 (see also the illustration there). The number of orbitals over n sectors is counted by the swinging factorial A056040.
A 'restart' of an orbital is a raise which starts from the central circle.
A118920 is a subtriangle.

Examples

			Triangle read by rows, n>=0. The length of row n is floor((n+1)/2) for n>=1.
[n] [k=0,1,2,...]                 [row sum]
[ 0] [1]                              1
[ 1] [1]                              1
[ 2] [2]                              2
[ 3] [5, 1]                           6
[ 4] [4, 2]                           6
[ 5] [18, 11, 1]                     30
[ 6] [10, 8, 2]                      20
[ 7] [65, 57, 17, 1]                140
[ 8] [28, 28, 12, 2]                 70
[ 9] [238, 252, 116, 23, 1]         630
[10] [84, 96, 54, 16, 2]            252
[11] [882, 1050, 615, 195, 29, 1]  2772
T(6, 2) = 2 because there are two orbitals over 6 segments which have 2 ascents:
[-1, 1, 1, -1, 1, -1] and [1, -1, 1, -1, 1, -1].
		

Crossrefs

Cf. A056040 (row sum), A118920, A232500.
Other orbital statistics: A241477 (first zero crossing), A274706 (absolute integral), A274708 (peaks), A274709 (max. height), A274710 (number of turns), A274878 (span), A274879 (returns), A274881 (ascent).

Programs

  • Sage
    # uses[unit_orbitals from A274709]
    from itertools import accumulate
    # Brute force counting
    def orbital_restart(n):
        if n == 0: return [1]
        S = [0]*((n+1)//2)
        for u in unit_orbitals(n):
            A = list(accumulate(u))
            L = [1 if A[i] == 0 and A[i+1] == 1  else 0 for i in (0..n-2)]
            S[sum(L)] += 1
        return S
    for n in (0..12): print(orbital_restart(n))

Formula

For even n>0: T(n,k) = 4*(k+1)*binomial(n,n/2-k-1)/n for k=0..n/2-1 (from A118920).

A274881 A statistic on orbital systems over n sectors: the number of orbitals which have an ascent of length k.

Original entry on oeis.org

1, 1, 0, 2, 0, 6, 0, 3, 3, 0, 18, 12, 0, 4, 12, 4, 0, 40, 80, 20, 0, 5, 40, 20, 5, 0, 75, 375, 150, 30, 0, 6, 120, 90, 30, 6, 0, 126, 1470, 882, 252, 42, 0, 7, 350, 371, 147, 42, 7, 0, 196, 5292, 4508, 1568, 392, 56, 0, 8, 1008, 1456, 672, 224, 56, 8
Offset: 0

Views

Author

Peter Luschny, Jul 12 2016

Keywords

Comments

The definition of an orbital system is given in A232500 (see also the illustration there). The number of orbitals over n sectors is counted by the swinging factorial A056040.
The ascent of an orbital is its longest up-run.

Examples

			Triangle read by rows, n>=0. The length of row n is floor((n+2)/2).
[ n] [k=0,1,2,...]                [row sum]
[ 0] [1]                              1
[ 1] [1]                              1
[ 2] [0, 2]                           2
[ 3] [0, 6]                           6
[ 4] [0, 3, 3]                        6
[ 5] [0, 18, 12]                     30
[ 6] [0, 4, 12, 4]                   20
[ 7] [0, 40, 80, 20]                140
[ 8] [0, 5, 40, 20, 5]               70
[ 9] [0, 75, 375, 150, 30]          630
[10] [0, 6, 120, 90, 30, 6]         252
[11] [0, 126, 1470, 882, 252, 42]  2772
[12] [0, 7, 350, 371, 147, 42, 7]   924
T(6,3) = 4 because four orbitals over six sectors have a maximal up-run of length 3.
[-1,-1,-1,1,1,1], [-1,-1,1,1,1,-1], [-1,1,1,1,-1,-1], [1,1,1,-1,-1,-1].
		

Crossrefs

Cf. A056040 (row sum), A232500.
Other orbital statistics: A241477 (first zero crossing), A274706 (absolute integral), A274708 (peaks), A274709 (max. height), A274710 (number of turns), A274878 (span), A274879 (returns), A274880 (restarts).

Programs

  • Sage
    # uses[unit_orbitals from A274709]
    # Brute force counting
    def orbital_ascent(n):
        if n < 2: return [1]
        S = [0]*((n+2)//2)
        for u in unit_orbitals(n):
            B = [0]*n
            for i in (0..n-1):
                B[i] = 0 if u[i] <= 0 else B[i-1] + u[i]
            S[max(B)] += 1
        return S
    for n in (0..12): print(orbital_ascent(n))

A248682 Decimal expansion of Sum_{n >= 0} (floor(n/2)!)^2/n!.

Original entry on oeis.org

2, 9, 4, 5, 5, 9, 9, 4, 3, 4, 8, 7, 4, 8, 6, 0, 3, 1, 1, 6, 3, 9, 1, 8, 0, 6, 7, 3, 4, 5, 9, 6, 9, 3, 9, 8, 4, 2, 5, 2, 5, 0, 3, 3, 3, 1, 6, 3, 7, 9, 9, 1, 6, 2, 2, 7, 2, 8, 7, 8, 6, 6, 0, 9, 2, 3, 3, 8, 8, 7, 2, 7, 2, 1, 1, 2, 3, 1, 4, 5, 6, 3, 2, 7, 4, 7
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2014

Keywords

Comments

Limit_{x -> inf} Sum {n=0..inf} (Floor[n/x])!^x/n! = e (A001113).
For A248682: x = 2; A248683: x = 3; A248684: x = 4; A248685: x = 5. - Robert G. Wilson v, Feb 22 2016
Let n} denote the swinging factorial A056040(n), then the constant equals Sum_{n>=0} 1/n} and is sometimes called the swinging constant e}. ("e}" is written in TeX $e\wr$). For a proof that it equals 3^(1/2)*(2/3)^3*Pi + 4/3 see the link to Mathematics Stack Exchange. - Peter Luschny, Jul 22 2022

Examples

			2.94559943487486031163918067345969398425250...
		

Crossrefs

Cf. A001113, A248683, A248684, A248785, A248664, A056040 (swinging factorial).

Programs

  • Mathematica
    RealDigits[Sum[(Floor[n/2])!^2/n!, {n, 0, 400}], 10, 111][[1]]
    RealDigits[4/3+8Pi/Sqrt[243],10,111][[1]] (* Robert G. Wilson v, Feb 10 2016 *)
  • PARI
    suminf(n=0, ((n\2)!)^2/n!) \\ Michel Marcus, Feb 11 2016

Formula

Equals Sum_{n >= 0} (n!^2)*p(2,n)/(2*n + 1)!, where p(k,n) is defined at A248664.
Equals Sum_{n >= 0} (floor(n/2)!)^2/n! = Sum_(n >= 1) (3n^2 - 7n + 6)/C(2n, n) = 4/3 + 8*Pi/sqrt(243). - Robert G. Wilson v, Feb 11 2016
Equals 1 + Integral_{x>=0} 1/(x^2 - x + 1)^2 dx. - Amiram Eldar, Nov 16 2021

A274708 A statistic on orbital systems over n sectors: the number of orbitals with k peaks.

Original entry on oeis.org

1, 1, 2, 4, 2, 4, 2, 12, 15, 3, 10, 8, 2, 38, 68, 30, 4, 26, 30, 12, 2, 121, 272, 183, 49, 5, 70, 104, 60, 16, 2, 384, 1026, 912, 372, 72, 6, 192, 350, 260, 100, 20, 2, 1214, 3727, 4095, 2220, 650, 99, 7, 534, 1152, 1050, 520, 150, 24, 2, 3822, 13200, 17178, 11600, 4510, 1032, 130, 8
Offset: 0

Views

Author

Peter Luschny, Jul 10 2016

Keywords

Comments

The definition of an orbital system is given in A232500 (see also the illustration there). The number of orbitals over n sectors is counted by the swinging factorial A056040.
An orbital w has a 'peak' at i+1 when signum(w[i]) < signum(w[i+1]) and signum(w[i+1]) > signum(w[i+2]).
A097692 is a subtriangle.

Examples

			Triangle read by rows, n>=0. The length of row n is floor((n+1)/2) for n>=1.
[ n] [k=0,1,2,...]               [row sum]
[ 0] [  1]                           1
[ 1] [  1]                           1
[ 2] [  2]                           2
[ 3] [  4,    2]                     6
[ 4] [  4,    2]                     6
[ 5] [ 12,   15,   3]               30
[ 6] [ 10,    8,   2]               20
[ 7] [ 38,   68,  30,   4]         140
[ 8] [ 26,   30,  12,   2]          70
[ 9] [121,  272, 183,  49,  5]     630
[10] [ 70,  104,  60,  16,  2]     252
[11] [384, 1026, 912, 372, 72, 6] 2772
[12] [192,  350, 260, 100, 20, 2]  924
T(6, 2) = 2 because the two orbitals [-1, 1, -1, 1, -1, 1] and [1, -1, 1, -1, 1, -1] have 2 peaks.
		

Crossrefs

Cf. A025565 (even col. 0), A056040 (row sum), A097692, A232500.
Other orbital statistics: A241477 (first zero crossing), A274706 (absolute integral), A274709 (max. height), A274710 (number of turns), A274878 (span), A274879 (returns), A274880 (restarts), A274881 (ascent).

Programs

  • Sage
    # uses[unit_orbitals from A274709]
    # Brute force counting
    def orbital_peaks(n):
        if n == 0: return [1]
        S = [0]*((n+1)//2)
        for u in unit_orbitals(n):
            L = [1 if sgn(u[i]) < sgn(u[i+1]) and sgn(u[i+1]) > sgn(u[i+2]) else 0 for i in (0..n-3)]
            S[sum(L)] += 1
        return S
    for n in (0..12): print(orbital_peaks(n))

A211226 Triangular array: T(n,k) = f(n)/(f(k)*f(n-k)), where f(n) = (floor(n/2))!.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 6, 3, 3, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 4, 4, 12, 6, 12, 4, 4, 1, 1, 1, 4, 4, 6, 6, 4, 4, 1, 1, 1, 5, 5, 20, 10, 30, 10, 20, 5, 5, 1, 1, 1, 5, 5, 10, 10, 10, 10, 5, 5, 1, 1, 1, 6, 6, 30, 15
Offset: 0

Views

Author

Peter Bala, Apr 05 2012

Keywords

Examples

			Triangle begins
.n\k.|....0....1....2....3....4....5....6....7....8....9...10...11
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
..0..|....1
..1..|....1....1
..2..|....1....1....1
..3..|....1....1....1....1
..4..|....1....2....2....2....1
..5..|....1....1....2....2....1....1
..6..|....1....3....3....6....3....3....1
..7..|....1....1....3....3....3....3....1....1
..8..|....1....4....4...12....6...12....4....4....1
..9..|....1....1....4....4....6....6....4....4....1....1
.10..|....1....5....5...20...10...30...10...20....5....5....1
.11..|....1....1....5....5...10...10...10...10....5....5....1....1
...
		

Crossrefs

Cf. A007318, A056040, A211227 (row sums), A211228 (shallow diagonal sums), A211229 (inverse), A211230 (array squared).

Formula

T(n,k) := f(n)/(f(k)*f(n-k)), where f(n) := (floor(n/2))!.
T(2*n+1,2*k) = T(2*n+1,2*k+1) = T(2*n,2*k) = binomial(n,k);
T(2*n,2*k+1) = n*binomial(n-1,k).
Recurrence equations:
T(2*n,2*k) = T(2*n-1,2*k) + T(2*n-1,2*k-1);
T(2*n,2*k+1) = T(2*n-1,2*k+1) + (n-1)*T(2*n-1,2*k);
T(2*n+1,2*k) = T(2*n,2*k); T(2*n+1,2*k+1) = T(2*n,2*k).
The Star of David property holds:
T(n,k+1)*T(n+1,k)*T(n+2,k+2) = T(n,k)*T(n+2,k+1)*T(n+1,k+2).
O.g.f.: (1 + t*(1+x) - t^2*(1-x+x^2) - t^3*(1+x+x^2+x^3))/(1 - t^2*(1+x^2))^2 = sum {n>=0} R(n,x)*t^n = 1 + (1+x)*t + (1+x+x^2)*t^2 + (1+x+x^2+x^3)*t^3 + ....
E.g.f.: cosh(t*sqrt(1+x^2)) + (1+x+x*t/2)/sqrt(1+x^2)*sinh(t*sqrt(1+x^2)) = sum {n>=0} R(n,x)*t^n/n! = 1 + (1+x)*t + (1+x+x^2)*t^2/2! + (1+x+x^2+x^3)*t^3/3! + ....
Row generating polynomials: R(2*n+1,x) = (1+x)*(1+x^2)^n; R(2*n,x) = (1+n*x+x^2)*(1+x^2)^(n-1).
Row sums: A211227. Shallow diagonal sums A211228. Central terms T(2*n,n) equal A056040(n).
The inverse array A211229 involves the derangement numbers A000166. The squared array is A211230.
Previous Showing 71-80 of 146 results. Next