cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A131466 a(n) = 5n^4 - 4n^3 + 3n^2 - 2n + 1.

Original entry on oeis.org

1, 3, 57, 319, 1065, 2691, 5713, 10767, 18609, 30115, 46281, 68223, 97177, 134499, 181665, 240271, 312033, 398787, 502489, 625215, 769161, 936643, 1130097, 1352079, 1605265, 1892451, 2216553, 2580607, 2987769, 3441315
Offset: 0

Views

Author

Mohammad K. Azarian, Jul 26 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[5n^4-4n^3+3n^2-2n+1,{n,0,30}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,3,57,319,1065},30] (* Harvey P. Dale, Nov 01 2020 *)
  • PARI
    a(n)=5*n^4-4*n^3+3*n^2-2*n+1 \\ Charles R Greathouse IV, Oct 21 2022

Formula

From Chai Wah Wu, Nov 13 2018: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
G.f.: (-15*x^4 - 54*x^3 - 52*x^2 + 2*x - 1)/(x - 1)^5. (End)

A268644 a(n) = 4*n^3 - 3*n^2 - 2*n - 1.

Original entry on oeis.org

-1, -2, 15, 74, 199, 414, 743, 1210, 1839, 2654, 3679, 4938, 6455, 8254, 10359, 12794, 15583, 18750, 22319, 26314, 30759, 35678, 41095, 47034, 53519, 60574, 68223, 76490, 85399, 94974, 105239, 116218, 127935, 140414, 153679, 167754, 182663, 198430, 215079, 232634, 251119
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 09 2016

Keywords

Comments

In general, the ordinary generating function for the values of cubic polynomial p*n^3 + q*n^2 + k*n + m is (m + (p + q + k - 3*m)*x + (4*p - 2*k + 3*m)*x^2 + (p - q + k - m)*x^3)/(1 - x)^4.
Primes in this sequence: 199, 743, 15583, 105239, 435359, 620999, 770239, 853079, 1738423, 3511103, 7580119, 8737039, 10006063, ...
If a(n) is a positive prime then n is congruent to 0 or 4 (mod 6).

Crossrefs

Programs

  • Magma
    [4*n^3-3*n^2-2*n-1: n in [0..40]]; // Vincenzo Librandi, Feb 10 2016
    
  • Mathematica
    Table[4 n^3 - 3 n^2 - 2 n - 1, {n, 0, 40}]
    LinearRecurrence[{4, -6, 4, -1}, {-1, -2, 15, 74}, 41]
    CoefficientList[Series[(-1 + 2 x + 17 x^2 + 6 x^3) / (1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 10 2016 *)
  • PARI
    a(n)=4*n^3-3*n^2-2*n-1 \\ Charles R Greathouse IV, Jul 26 2016

Formula

G.f.: (-1 + 2*x + 17*x^2 + 6*x^3)/(1 - x)^4.
a(n) = A103532(n - 1) - A005408(n), n>0.
a(n) = 4*a(n - 1) - 6*a(n - 2) + 4*a(n - 3) - a(n - 4).
Sum_{n>=0} 1/a(n) = -1.407823506818026589265...
E.g.f.: exp(x)*(-1 - x + 9*x^2 + 4*x^3). - Stefano Spezia, Nov 17 2024

A113618 a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6 + 8*n^7.

Original entry on oeis.org

1, 36, 1793, 24604, 167481, 756836, 2620201, 7526268, 18831569, 42374116, 87654321, 169343516, 309160393, 538155684, 899445401, 1451432956, 2271560481, 3460629668, 5147732449, 7495831836, 10708033241, 15034586596, 20780659593
Offset: 0

Views

Author

Jonathan Vos Post, Jan 14 2006

Keywords

Comments

1 + 2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 + 7*n^6 + 8*n^7 is the derivative of 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 = (x^9 - 1)/(x-1).

Examples

			1 + 2*8 + 3*8^2 + 4*8^3 + 5*8^4 + 6*8^5 + 7*8^6 + 8*8^7 = 18831569 = 173 * 199 * 547.
1 + 2*26 + 3*26^2 + 4*26^3 + 5*26^4 + 6*26^5 + 7*26^6 + 8*26^7 = 66490537361 is prime, the smallest prime in the sequence.
		

Crossrefs

Programs

  • Magma
    [1+2*n+3*n^2+4*n^3+5*n^4+6*n^5+7*n^6+8*n^7: n in [1..43]] // Vincenzo Librandi, Dec 21 2010
  • Mathematica
    Join[{1},Table[Total[Table[p*n^(p-1),{p,8}]],{n,30}]] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,36,1793,24604,167481,756836,2620201,7526268},30] (* Harvey P. Dale, Jul 16 2014 *)

Formula

G.f.: (1+28*x+1533*x^2+11212*x^3+18907*x^4+7956*x^5+679*x^6+4*x^7)/(x-1)^8. - R. J. Mathar, Dec 21 2010
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8), with a(0)=1, a(1)=36, a(2)=1793, a(3)=24604, a(4)=167481, a(5)=756836, a(6)=2620201, a(7)=7526268. - Harvey P. Dale, Jul 16 2014

A113632 a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6 + 8*n^7 + 9*n^8 + 10*n^9.

Original entry on oeis.org

1, 55, 9217, 280483, 3378745, 23803711, 118513705, 462945547, 1512003793, 4303999495, 10987654321, 25678050355, 55776799177, 113924725903, 220792014745, 408951042331, 728121033505, 1252121211607, 2087920281313
Offset: 0

Views

Author

Jonathan Vos Post, Jan 14 2006

Keywords

Comments

1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7 + 9*x^8 + 10*x^9 is the derivative of 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 = (x^11 - 1)/(x-1).

Examples

			a(5) = 1 + 2*5 + 3*5^2 + 4*5^3 + 5*5^4 + 6*5^5 + 7*5^6 + 8*5^7 + 9*5^8 + 10*5^9 = 23803711 is prime.
a(30) = 1 + 2*30 + 3*30^2 + 4*30^3 + 5*30^4 + 6*30^5 + 7*30^6 + 8*30^7 + 9*30^8 + 10*30^9 = 202915112960761 is prime.
		

Crossrefs

Programs

  • Mathematica
    With[{eq=Total[Range[10](n^Range[0,9])]},Table[eq,{n,0,20}]] (* Harvey P. Dale, Mar 14 2011 *)

Formula

a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6 + 8*n^7 + 9*n^8 + 10*n^9.
G.f.: (1+x*(45+x*(8712+x*(190668+x*(982290+x*(1543254+x*(784080+x*(116268+x*(3477+5*x)))))))))/(x-1)^10. - Harvey P. Dale, Mar 14 2011
Previous Showing 11-14 of 14 results.