cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A056674 Number of squarefree divisors which are not unitary. Also number of unitary divisors which are not squarefree.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 2, 2, 0, 0, 0, 2, 1, 0, 0, 4, 0, 0, 0, 2, 0, 4, 0, 2, 0, 0, 0, 2, 0, 2, 2, 3, 0, 0, 0, 2, 0
Offset: 1

Views

Author

Labos Elemer, Aug 10 2000

Keywords

Comments

Numbers of unitary and of squarefree divisors are identical, although the 2 sets are usually different, so sizes of parts outside overlap are also equal to each other.

Examples

			For n = 252, it has 18 divisors, 8 are unitary, 8 are squarefree, 2 belong to both classes, so 6 are squarefree but not unitary, thus a(252) = 6. The set {2,3,14,21,42} forms squarefree but non-unitary while the set {4,9,36,28,63,252} of same size gives the set of not squarefree but unitary divisors.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, And[SquareFreeQ@ #, ! CoprimeQ[#, n/#]] &], {n, 105}] (* Michael De Vlieger, Jul 19 2017 *)
    f[p_, e_] := If[e == 1, 2, 1]; a[1] = 0; a[n_] := 2^Length[fct = FactorInteger[n]] - Times @@ (f @@@ fct); Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)
  • PARI
    A034444(n) = (2^omega(n));
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); } \\ Charles R Greathouse IV, Aug 13 2013
    A055231(n) = n/A057521(n);
    A056674(n) = (A034444(n) - numdiv(A055231(n)));
    \\ Or:
    A055229(n) = { my(c=core(n)); gcd(c, n/c); }; \\ Charles R Greathouse IV, Nov 20 2012
    A056674(n) = ((2^omega(n)) - numdiv(core(n)/A055229(n)));
    \\ Antti Karttunen, Jul 19 2017
    
  • PARI
    a(n) = {my(f = factor(n), e = f[,2]); 2^omega(f) - prod(i = 1, #e, if(e[i] == 1, 2, 1));} \\ Amiram Eldar, Jul 24 2024
    
  • Python
    from sympy import gcd, primefactors, divisor_count
    from sympy.ntheory.factor_ import core
    def a055229(n):
        c=core(n)
        return gcd(c, n//c)
    def a056674(n): return 2**len(primefactors(n)) - divisor_count(core(n)//a055229(n))
    print([a056674(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 19 2017

Formula

a(n) = A034444(n) - A056671(n) = A034444(n) - A000005(A055231(n)) = A034444(n) - A000005(A007913(n)/A055229(n)).

A366147 The number of divisors of the cubefree part of n (A360539).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 1, 3, 4, 2, 6, 2, 4, 4, 1, 2, 6, 2, 6, 4, 4, 2, 2, 3, 4, 1, 6, 2, 8, 2, 1, 4, 4, 4, 9, 2, 4, 4, 2, 2, 8, 2, 6, 6, 4, 2, 2, 3, 6, 4, 6, 2, 2, 4, 2, 4, 4, 2, 12, 2, 4, 6, 1, 4, 8, 2, 6, 4, 8, 2, 3, 2, 4, 6, 6, 4, 8, 2, 2, 1, 4, 2, 12, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e < 3, e+1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x < 3, x+1, 1), factor(n)[, 2]));

Formula

a(n) = A000005(A360539(n)).
a(n) = A000005(n)/A366145(n).
Multiplicative with a(p^e) = e+1 if e <= 2, and 1 otherwise.
a(n) >= 1, with equality if and only if n is cubefull (A036966).
a(n) <= A000005(n), with equality if and only if n is cubefree (A004709).
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^s + 1/p^(2*s) - 2/p^(3*s)).
From Vaclav Kotesovec, Oct 01 2023: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 3/p^(3*s) + 2/p^(4*s)).
Let f(s) = Product_{p prime} (1 - 3/p^(3*s) + 2/p^(4*s)).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 3/p^3 + 2/p^4) = 0.66219033176371496870504912254207846719824904470940603905284774924086...,
f'(1) = f(1) * Sum_{p prime} (9*p - 8) * log(p) / (p^4 - 3*p + 2) = f(1) * 1.04316863044761953555286128194165251303791613504188623828521117799260...
and gamma is the Euler-Mascheroni constant A001620. (End)

A385042 The number of unitary divisors of n whose exponents in their prime factorizations are all powers of 2 (A138302).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 1, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 2, 2, 4, 1, 4, 2, 8, 2, 1, 4, 4, 4, 4, 2, 4, 4, 2, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 2, 4, 2, 4, 4, 2, 8, 2, 4, 4, 1, 4, 8, 2, 4, 4, 8, 2, 2, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

First differs from A367515 at n = 128.
The sum of these divisors is A385043(n), and the largest of them is A367168(n).

Crossrefs

The unitary analog of A353898.
The number of unitary divisors of n that are: A000034 (power of 2), A055076 (exponentially odd), A056624 (square), A056671 (squarefree), A068068 (odd), A323308 (powerful), A365498 (cubefree), A365499 (biquadratefree), A368248 (cubefull), A380395 (cube), A382488 (3-smooth), this sequence (exponentially 2^n), A385044 (5-rough).

Programs

  • Mathematica
    f[p_, e_] := Boole[e == 2^IntegerExponent[e, 2]] + 1; a[ 1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> (x == 1<
    				

Formula

Multiplicative with a(p^e) = A209229(e) + 1.
a(n) <= A034444(n), with equality if and only if n is in A138302.
a(n) <= A353898(n), with equality if and only if n is squarefree (A005117).

A385044 The number of unitary divisors of n that are 5-rough numbers (A007310).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 4, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 4, 2, 2, 2, 2, 2, 2, 2, 2, 1, 4, 2, 2, 2, 2, 4, 2, 1, 2, 2, 2, 2, 4, 2, 2, 2, 1, 2, 2, 2, 4, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

The sum of these divisors is A385045(n), and the largest of them is A065330(n).

Crossrefs

The unitary analog of A035218.
The number of unitary divisors of n that are: A000034 (power of 2), A055076 (exponentially odd), A056624 (square), A056671 (squarefree), A068068 (odd), A323308 (powerful), A365498 (cubefree), A365499 (biquadratefree), A368248 (cubefull), A380395 (cube), A382488 (3-smooth), A385042 (exponentially 2^n), this sequence (5-rough).

Programs

  • Mathematica
    f[p_, e_] := If[p <= 3, 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x <= 3, 1, 2), factor(n)[, 1]));

Formula

Multiplicative with a(p^e) = 1 if p <= 3, and 2 if p >= 5.
a(n) = A034444(n)/A382488(n).
a(n) <= A034444(n), with equality if and only if n is 5-rough.
a(n) <= A035218(n).
Dirichlet g.f.: (zeta(s)^2/zeta(2*s)) * (1/((1+1/2^s)*(1+1/3^s))).
Sum_{k=1..n} a(k) ~ (n / (2 * zeta(2))) *(log(n) + 2*gamma - 1 + log(2)/3 + log(3)/4 - 2*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620).

A056673 Number of unitary and squarefree divisors of binomial(n, floor(n/2)). Also the number of divisors of the powerfree part of A001405(n), A056060(n).

Original entry on oeis.org

1, 2, 2, 4, 4, 2, 4, 8, 4, 2, 16, 8, 8, 8, 8, 16, 32, 16, 32, 16, 32, 32, 64, 32, 16, 16, 8, 8, 32, 32, 64, 128, 128, 64, 256, 128, 128, 128, 512, 256, 512, 512, 512, 512, 64, 64, 256, 128, 128, 128, 128, 128, 256, 256, 2048, 2048, 4096, 4096, 2048, 2048, 2048, 2048
Offset: 1

Views

Author

Labos Elemer, Aug 10 2000

Keywords

Examples

			n = 14: binomial(15,7) = 3432 = 2*2*2*3*11*13, which has 32 divisors. Of those divisors, 16 are unitary: {1, 3, 8, 11, 13, 24, 33, 39, 88, 104, 143, 264, 312, 429, 1144, 3432}; 16 are squarefree: {1, 2, 3, 6, 11, 13, 22, 26, 33, 39, 66, 78, 143, 286, 429, 858}. Only 8 of the divisors belong to both classes: {1, 3, 11, 13, 33, 39, 143, 429}. Thus, a(14) = 8.
		

Crossrefs

Programs

  • Mathematica
    Table[With[{m = Binomial[n, Floor[n/2]]}, DivisorSum[m, 1 &, And[CoprimeQ[#, m/#], SquareFreeQ@ #] &]], {n, 62}] (* Michael De Vlieger, Sep 05 2017 *)
    f[p_, e_] := If[e == 1, 2, 1]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[ Binomial[n, Floor[n/2]]]); Array[a, 60] (* Amiram Eldar, Sep 06 2020 *)
  • PARI
    a(n) = my(b=binomial(n, n\2)); sumdiv(b, d, issquarefree(d) && (gcd(d, b/d) == 1)); \\ Michel Marcus, Sep 05 2017

Formula

a(n) = A000005(A055231(x)) = A000005(A007913(x)/A055229(x)), where x = A001405(n) = binomial(n, floor(n/2)).
a(n) = A056671(A001405(n)). - Amiram Eldar, Sep 06 2020

A380161 a(n) is the value of the Euler totient function when applied to the powerfree part of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 1, 4, 10, 2, 12, 6, 8, 1, 16, 1, 18, 4, 12, 10, 22, 2, 1, 12, 1, 6, 28, 8, 30, 1, 20, 16, 24, 1, 36, 18, 24, 4, 40, 12, 42, 10, 4, 22, 46, 2, 1, 1, 32, 12, 52, 1, 40, 6, 36, 28, 58, 8, 60, 30, 6, 1, 48, 20, 66, 16, 44, 24, 70, 1, 72, 36
Offset: 1

Views

Author

Amiram Eldar, Jan 13 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, p-1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, f[i, 1]-1, 1));}

Formula

a(n) = A000010(A055231(n)).
a(n) >= 1, with equality if and only if n is in A335851.
a(n) <= A000010(n), with equality if and only if n is squarefree (A005117).
Multiplicative with a(p) = p-1, and a(p^e) = 1 if e >= 2.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 - 2/p^s + 1/p^(s-1) - 1/p^(2*s-1) + 2/p^(2*s)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2) * Product_{p prime} (1 - 2/p^5 + 3/p^4 + 1/p^3 - 3/p^2) = 0.46288631864329056778... .

A091306 Sum of squares of unitary, squarefree divisors of n, including 1.

Original entry on oeis.org

1, 5, 10, 1, 26, 50, 50, 1, 1, 130, 122, 10, 170, 250, 260, 1, 290, 5, 362, 26, 500, 610, 530, 10, 1, 850, 1, 50, 842, 1300, 962, 1, 1220, 1450, 1300, 1, 1370, 1810, 1700, 26, 1682, 2500, 1850, 122, 26, 2650, 2210, 10, 1, 5, 2900, 170, 2810, 5, 3172, 50, 3620
Offset: 1

Views

Author

Vladeta Jovovic, Feb 23 2004

Keywords

Comments

If b(n,k) = sum of k-th powers of unitary, squarefree divisors of n, including 1, then b(n,k) is multiplicative with b(p,k)=p^k+1 and b(p^e,k)=1 for e>1.
Dirichlet g.f.: zeta(s)*product_{primes p} (1+p^(2-s)-p^(2-2s)). Dirichlet convolution of A000012 with the multiplicative sequence 1, 4, 9, -4, 25, 36, 49, 0, -9, 100, 121, -36, 169, 196,... - R. J. Mathar, Aug 28 2011

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, p^2 + 1, 1]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 30 2019*)

Formula

Multiplicative with a(p)=p^2+1 and a(p^e)=1 for e>1.
From Vaclav Kotesovec, Nov 20 2021: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-2) * Product_{primes p} (1 + p^(4 - 3*s) - p^(2 - 2*s) - p^(4 - 2*s)).
Sum_{k=1..n} a(k) ~ c * zeta(3) * n^3 / 3, where c = Product_{primes p} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.576152735385667059520611078264117275406247116802896188...
(End)
Previous Showing 11-17 of 17 results.