A096490 Numbers k such that sigma_2(k) >= (3/2) * k^2, where sigma_2(k) is the sum of the squares of the divisors of k.
60, 120, 168, 180, 240, 252, 300, 336, 360, 420, 480, 504, 540, 600, 660, 672, 720, 756, 780, 792, 840, 900, 924, 936, 960, 1008, 1020, 1080, 1140, 1176, 1200, 1260, 1320, 1344, 1380, 1440, 1500, 1512, 1560, 1584, 1620, 1680, 1740, 1764, 1800, 1848, 1860
Offset: 1
Examples
For k = 60: 1 + 4 + 9 + 16 + 25 + 36 + 100 + 144 + 225 + 400 + 900 + 3600 = 5460 > (3/2) * 3600 = 5400.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Do[s=DivisorSigma[2, n]/(n^2); If[Greater[s, 3/2], Print[n]], {n, 1, 10000}] Select[Range[2000],DivisorSigma[2,#]/#^2>=3/2&] (* Harvey P. Dale, Mar 05 2013 *)
-
PARI
is(n)=sigma(n,-2) >= 3/2 \\ Charles R Greathouse IV, Feb 03 2018
Formula
A001221(a(n)) >= 3. - Amiram Eldar, Aug 16 2024
Extensions
Name corrected by Charles R Greathouse IV, Feb 03 2018
Comments