cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A199324 Triangle T(n,k), read by rows, given by (-1,1,-1,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, -1, 1, 0, -1, 1, 1, -1, -1, 1, -1, 3, -2, -1, 1, 0, -2, 5, -3, -1, 1, 1, -2, -2, 7, -4, -1, 1, -1, 5, -7, -1, 9, -5, -1, 1, 0, -3, 12, -15, 1, 11, -6, -1, 1, 1, -3, -3, 21, -26, 4, 13, -7, -1, 1, -1, 7, -15, 3, 31, -40, 8, 15, -8, -1, 1, 0, -4, 22, -42
Offset: 0

Views

Author

Philippe Deléham, Nov 12 2011

Keywords

Examples

			Triangle begins :
1
-1, 1
0, -1, 1
1, -1, -1, 1
-1, 3, -2, -1, 1
0, -2, 5, -3, -1, 1
1, -2, -2, 7, -4, -1, 1
-1, 5, -7, -1, 9, -5, -1, 1
		

Crossrefs

Cf. A026729, A063967, A129267, A176971 (diagonals sums).

Formula

T(n,k)=T(n-1,k-1)+T(n-2,k-1)-T(n-1,k)-T(n-2,k), T(0,0)=1.
G.f.: 1/(1-(y-1)*x-(y-1)*x^2).
Sum_{k, 0<=k<=n}T(n,k)*x^k = A000748(n), A108520(n), A049347(n), A000007(n), A000045(n+1), A002605(n+1), A030195(n+1), A057087(n), A057088(n), A057089(n), A057090(n), A057091(n), A057092(n), A057093(n) for x = -2,-1,0,1,2,3,4,5,6,7,8,9,10,11 respectively.

A084169 A Pell Jacobsthal product.

Original entry on oeis.org

0, 1, 2, 15, 60, 319, 1470, 7267, 34680, 168435, 810898, 3921103, 18918900, 91381991, 441150502, 2130258075, 10285325040, 49663079099, 239791814010, 1157823924167, 5590452446700, 26993130847215, 130334271942158
Offset: 0

Views

Author

Paul Barry, May 18 2003

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [(2^n-(-1)^n)*Evaluate(DicksonSecond(n-1,-1), 2)/3: n in [1..40]]; // G. C. Greubel, Oct 11 2022
    
  • Mathematica
    LinearRecurrence[{2,13,4,-4}, {0,1,2,15}, 41] (* G. C. Greubel, Oct 11 2022 *)
  • SageMath
    def A084169(n): return (2^n-(-1)^n)*lucas_number1(n,2,-1)/3
    [A084169(n) for n in range(41)] # G. C. Greubel, Oct 11 2022

Formula

a(n) = (2^n - (-1)^n)*( (1+sqrt(2))^n - (1-sqrt(2))^n )/(6*sqrt(2)).
a(n) = A001045(n)*A000129(n).
G.f.: x*(1-2*x^2)/((1+2*x-x^2)*(1-4*x-4*x^2)). - Colin Barker, May 01 2012
a(n) = (A007985 + 2*A057087(n))/3. - R. J. Mathar, Sep 29 2020

A106568 Expansion of 4*x/(1 - 4*x - 4*x^2).

Original entry on oeis.org

0, 4, 16, 80, 384, 1856, 8960, 43264, 208896, 1008640, 4870144, 23515136, 113541120, 548225024, 2647064576, 12781158400, 61712891904, 297976201216, 1438756372480, 6946930294784, 33542746669056, 161958707855360, 782005818097664, 3775858103812096, 18231455687639040
Offset: 0

Views

Author

Roger L. Bagula, May 30 2005

Keywords

Comments

This sequence is part of a class of sequences with the properties: a(n) = m*(a(n-1) + a(n-2)) with a(0) = 0 and a(1) = m, g.f.: m*x/(1 - m*x - m*x^2), and have the Binet form m*(alpha^n - beta^n)/(alpha - beta) where 2*alpha = m + sqrt(m^2 + 4*m) and 2*beta = p - sqrt(m^2 + 4*m). - G. C. Greubel, Sep 06 2021

Crossrefs

Sequences of the form a(n) = m*(a(n-1) + a(n-2)): A000045 (m=1), A028860 (m=2), A106435 (m=3), A094013 (m=4), A106565 (m=5), A221461 (m=6), A221462 (m=7).

Programs

  • Magma
    [n le 2 select 4*(n-1) else 4*(Self(n-1) +Self(n-2)): n in [1..41]]; // G. C. Greubel, Sep 06 2021
    
  • Maple
    A106568 := n -> ifelse(n=0, 0, 4^(n)*hypergeom([(1-n)/2, 1-n/2], [1-n], -1)):
    seq(simplify(A106568(n)), n = 0..24);  # Peter Luschny, Mar 30 2025
  • Mathematica
    LinearRecurrence[{4,4}, {0,4}, 40] (* G. C. Greubel, Sep 06 2021 *)
  • Sage
    [2^(n+1)*lucas_number1(n,2,-1) for n in (0..40)] # G. C. Greubel, Sep 06 2021

Formula

a(n) = 4 * A057087(n).
a(n) = A094013(n+1). - R. J. Mathar, Aug 24 2008
From Philippe Deléham, Sep 19 2009: (Start)
a(n) = 4*a(n-1) + 4*a(n-2) for n > 2; a(0) = 0, a(1)=4.
G.f.: 4*x/(1 - 4*x - 4*x^2). (End)
G.f.: Q(0) - 1, where Q(k) = 1 + 2*(1+2*x)*x + 2*(2*k+3)*x - 2*x*(2*k+1 +2*x+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 04 2013
a(n) = 2^(n+1)*A000129(n). - G. C. Greubel, Sep 06 2021
a(n) = 4^n*hypergeom([(1-n)/2, 1-n/2], [1-n], -1) for n > 0. - Peter Luschny, Mar 30 2025

Extensions

Edited by N. J. A. Sloane, Apr 30 2006
Simpler name using o.g.f. by Joerg Arndt, Oct 05 2013

A182436 Triangle T(n,k), read by rows, given by (2, -1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 1, 2, 5, 2, 4, 8, 11, 4, 4, 20, 25, 24, 8, 8, 28, 70, 69, 52, 16, 8, 60, 126, 213, 178, 112, 32, 16, 80, 288, 460, 599, 440, 240, 64, 16, 160, 472, 1128, 1489, 1600, 1056, 512, 128, 32, 208, 976, 2152, 3914, 4457, 4120, 2480, 1088, 256
Offset: 0

Views

Author

Philippe Deléham, Apr 28 2012

Keywords

Comments

Row sums are the powers of 3.

Examples

			Triangle begins :
1
2, 1
2, 5, 2
4, 8, 11, 4
4, 20, 25, 24, 8
8, 28, 70, 69, 52, 16
8, 60, 126, 213, 178, 112, 32
16, 80, 288, 460, 599, 440, 240, 64
16, 160, 472, 1128, 1489, 1600, 1056, 512, 128
32, 208, 976, 2152, 3914, 4457, 4120, 2480, 1088, 256
		

Crossrefs

Formula

G.f.: (1+2*x-y*x)/(1-2*y*x-(2+y)*x^2).
T(n,k) = 2*T(n-1,k-1) + 2*T(n-2,k) + T(n-2,k-1), T(0,0) = T(1,1) = 1, T(1,0) = T(2,0) = T(2,2) = 2, T(2,1) = 5 and T(n,k) = 0 if k<0 or if k>n.
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A123335(n-1), A016116(n+1), A000244(n), A057087(n), A091928(n) for x = -2, -1, 0, 1, 2, 3 respectively.

A228603 a(1) = 9, a(2) = 44, a(n) = 4*(a(n-1) + a(n-2)) (n >=3).

Original entry on oeis.org

9, 44, 212, 1024, 4944, 23872, 115264, 556544, 2687232, 12975104, 62649344, 302497792, 1460588544, 7052345344, 34051735552, 164416323584, 793872236544, 3833154240512, 18508105908224, 89365040594944, 431492586012672, 2083430506430464, 10059692369772544
Offset: 1

Views

Author

Emeric Deutsch, Nov 02 2013

Keywords

Comments

a(n) = number of independent vertex subsets (i.e. the Merrifield-Simmons index) of the normal alkyl radical of n carbons (i.e. CH_3(CH_2)_{n-1}).

References

  • R. E. Merrifield, H. E. Simmons, Topological Methods in Chemistry, Wiley, New York, 1989. pp. 161-162.

Crossrefs

Cf. A228602.

Programs

  • Maple
    a := proc (n) if n = 1 then 9 elif n = 2 then 44 else 4*a(n-1)+4*a(n-2) end if end proc: seq(a(n), n = 1 .. 25);
  • Mathematica
    LinearRecurrence[{4,4},{9,44},30] (* Harvey P. Dale, Oct 30 2016 *)

Formula

a(n) = (8 - 5*sqrt(2))*(2 - 2*sqrt(2))^(n)/8 + (8 + 5*sqrt(2))*(2 + 2*sqrt(2))^(n)/8.
G.f.: x*(9+8*x)/(1-4*x-4*x^2).
a(n) = 9*A057087(n-1)+8*A057087(n-2). - R. J. Mathar, Nov 24 2013

A267652 a(n) = 4*a(n - 1) + 4*a(n - 2) for n>1, a(0)=2, a(1)=3.

Original entry on oeis.org

2, 3, 20, 92, 448, 2160, 10432, 50368, 243200, 1174272, 5669888, 27376640, 132186112, 638251008, 3081748480, 14879997952, 71846985728, 346907934720, 1675019681792, 8087710466048, 39050920591360, 188554524229632, 910421779283968, 4395905214054400, 21225307973353472, 102484852749631488
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 19 2016

Keywords

Comments

Generalized Fibonacci sequence.

Crossrefs

Programs

  • Mathematica
    Table[2^(n - 5/2) ((1 + 4 Sqrt[2]) (1 - Sqrt[2])^n - (1 - 4 Sqrt[2]) (1 + Sqrt[2])^n), {n, 0, 25}]
    RecurrenceTable[{a[0] == 2, a[1] == 3, a[n] == 4 a[n - 1] + 4 a[n - 2]}, a, {n, 25}] (* Bruno Berselli, Jan 19 2016 *)
    LinearRecurrence[{4, 4}, {2, 3}, 20] (* Vincenzo Librandi, Jan 19 2016 *)
  • PARI
    Vec((2-5*x)/(1-4*x-4*x^2) + O(x^100)) \\ Altug Alkan, Jan 19 2016

Formula

G.f.: (2 - 5*x)/(1 - 4*x - 4*x^2).
a(n) = 2^(n-5/2)*((1+4*sqrt(2))*(1-sqrt(2))^n - (1-4*sqrt(2))*(1+sqrt(2))^n).
Lim_{n -> infinity} a(n)/a(n - 1) = 2 + 2*sqrt(2) = 2*A014176 = 4.82842712...
a(n) = 2*A057087(n)-5*A057087(n-1). - R. J. Mathar, Jun 07 2016

A320660 Number of business cards required to build an origami level n Jerusalem cube.

Original entry on oeis.org

12, 72, 672, 6048, 55488, 511872, 4738560, 43943424, 407890944, 3787941888, 35186122752, 326885842944, 3037038034944, 28217571901440, 262178452930560, 2436006721486848, 22634041833160704, 210303674768424960, 1954034324430913536, 18155901427591938048
Offset: 0

Views

Author

Keywords

Comments

The actual Jerusalem cube fractal cannot be built using a simple integer grid. However, one can create an approximate one by choosing the cube side length to be a Pell number (see link).
In practice, the first two terms represent the level 0 because they both consist of cubes (1 X 1 X 1 and 2 X 2 X 2, respectively). The "cross" shape appears at index 2, which is usually considered as the first iteration (for example, the "hole" shape in the Menger Sponge is visible at level 1).
The limit of a(n+1)/a(n) is equal to 2*(2+sqrt(7)) as n approaches infinity.

Examples

			a(2) = 672 because 456 business cards are needed for the squeleton and 216 more for the panels.
		

References

  • Eric Baird, L'art fractal, Tangente 150 (2013), 45.
  • Thomas Hull, Project Origami: Activities for Exploring Mathematics, A K Peters/CRC Press, 2006.

Crossrefs

At the n-th level, the cube side length is A000129(n+1), the squeleton requires 6*A239549(n+1) business cards, and each face requires A057087(n) units for the panels.
Cf. A212596 (Origami Menger sponge), A304960 (Origami Mosely snowflake sponge).

Programs

  • Mathematica
    LinearRecurrence[{12, -16, -80, -48}, {12, 72, 672, 6048}, 20]
  • Maxima
    makelist((3/14)*(7*(2 - 2*sqrt(2))^n + 7*(2 + 2*sqrt(2))^n + (21 - 5*sqrt(7))*(4 - 2*sqrt(7))^n + (21 + 5*sqrt(7))*(4 + 2*sqrt(7))^n), n, 0, 20), ratsimp;

Formula

a(n) = (3/14)*(7*(2 - 2*sqrt(2))^n + 7*(2 + 2*sqrt(2))^n + (21 - 5*sqrt(7))*(4 - 2*sqrt(7))^n + (21 + 5*sqrt(7))*(4 + 2*sqrt(7))^n).
a(n) = 12*a(n-1) - 16*a(n-2) - 80*a(n-3) - 48*a(n-4), n > 4.
G.f.: 12*(1 - 6*x + 8*x^3)/((1-4*x-4*x^2)*(1-8*x-12*x^2)) .
E.g.f.: (3/14)*(7*exp((2 - 2*sqrt(2))*x) + 7*exp((2 + 2*sqrt(2))*x) + (21 - 5*sqrt(7))*exp((4 - 2*sqrt(7))*x) + (21 + 5*sqrt(7))*exp((4 + 2*sqrt(7))*x)).
a(n) = 3*( A084128(n) -2*A239549(n) +3*A239549(n+1) ). - R. J. Mathar, Mar 06 2022
Previous Showing 31-37 of 37 results.