cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A084960 Initial prime of a prime chain of length n under the iteration x->5x+4.

Original entry on oeis.org

2, 3, 5, 83, 263, 5333, 5333, 6714497, 42360737, 3757699889, 3757699889, 1431898413161, 5654774136689, 12756824771254199, 184574272412533499
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = c*x + d.

Examples

			a(3) = 5 since 5, f(5) = 29 and f(29) = 149 are primes when f(x) = 5x+4.
		

Crossrefs

Programs

  • Mathematica
    t[p_] := Block[{c=1, q = 5*p+4}, While[ PrimeQ@q, q = 5*q + 4; c++]; c]; a[n_] := Block[{p = 2}, While[t[p] < n, p = NextPrime@ p]; p]; Array[a, 8] (* Giovanni Resta, Mar 21 2017 *)

Extensions

a(9) from Stefan Steinerberger, May 18 2007
a(10)-a(11) from Donovan Johnson, Sep 27 2008
a(12)-a(13) from Giovanni Resta, Mar 21 2017
a(14)-a(15) from Bert Dobbelaere, May 30 2025

A084958 Initial prime of a prime chain of length n under the iteration x->5x+2.

Original entry on oeis.org

2, 3, 13, 19, 373, 135859, 135859, 18235423, 26588257, 93112729, 376038903103, 7087694466289, 120223669028389
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = cx + d.
a(11) > 8695354111. - Donovan Johnson, Sep 27 2008

Examples

			a(3)=13 since 13, f(13)=67 and f(67)=337 are primes when f(x) = 5x+2.
		

Crossrefs

Programs

  • Mathematica
    c[p_] := Block[{k = 1, q = 5*p+2}, While[ PrimeQ[q], q = 5*q+2; k++]; k]; a[n_] := Block[{p = 2}, While[c[p] < n, p = NextPrime@ p]; p]; Array[a, 7] (* Giovanni Resta, Mar 21 2017 *)

Extensions

a(10) from Donovan Johnson, Sep 27 2008
a(11)-a(12) from John Cerkan, Jan 20 2017
a(13) from Giovanni Resta, Mar 21 2017

A084956 Initial prime of the first prime chain of length n under the iteration x -> 3x+4.

Original entry on oeis.org

2, 3, 3, 23, 3203, 34613, 165443, 1274803, 26314573, 26314573, 590256673403, 15113026057043, 334156170011893, 3998669569752373
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = cx + d.
a(11) > 8695354111. - Donovan Johnson, Sep 27 2008

Examples

			a(3) = 3 since 3, f(3) = 13 and f(13) = 43 are primes when f(x) = 3*x + 4.
		

Crossrefs

Programs

  • Mathematica
    c[p_] := Block[{k=1, q=3*p + 4}, While[PrimeQ[q], q=3*q+4; k++]; k]; a[n_] := Block[{p = 2}, While[c[p] < n, p = NextPrime[p]]; p]; Array[a, 7] (* Giovanni Resta, Mar 22 2017 *)

Extensions

a(9)-a(10) from Donovan Johnson, Sep 27 2008
a(11)-a(12) from John Cerkan, Jan 13 2017
a(13)-a(14) from Giovanni Resta, Mar 22 2017

A084957 Initial prime of the first prime chain of length n under the iteration x -> 4x + 3.

Original entry on oeis.org

2, 2, 2, 2, 1447, 9769, 17231, 17231, 32611, 18527009, 161205841, 3123824801, 26813406071, 4398156030379, 4398156030379
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = c*x + d.

Examples

			a(3) = 2 since 2, f(2) = 11, and f(11) = 47 are primes when f(x) = 4*x + 3.
		

Crossrefs

Programs

  • Mathematica
    c[p_] := Block[{k=1, q=4*p+3}, While[ PrimeQ[q], q=4*q+3; k++]; k]; a[n_] := Block[ {p=2}, While[c[p] < n, p = NextPrime@ p]; p]; Array[a, 9] (* Giovanni Resta, Mar 21 2017 *)
  • PARI
    has(p,n)=for(i=2,n, if(!isprime(p=4*p+3), return(0))); 1
    a(n)=forprime(p=2,, if(has(p,n), return(p))) \\ Charles R Greathouse IV, Jan 20 2017

Extensions

a(11)-a(12) from Donovan Johnson, Sep 27 2008
a(13) from John Cerkan, Jan 20 2017
a(14)-a(15) from Giovanni Resta, Mar 21 2017

A084959 Initial prime of a prime chain of length n under the iteration x->5x+6.

Original entry on oeis.org

2, 5, 7, 7, 79, 79, 345431, 21171649, 34640153, 4174239239, 268130051191, 268130051191, 253134809926049, 253134809926049, 253134809926049
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = cx + d.
a(11) > 8695354111. [Donovan Johnson, Sep 27 2008]

Examples

			a(3) = 13 since 7, f(7) = 41, and f(41) = 211 are primes when f(x) = 5*x + 6.
		

Crossrefs

Programs

  • Mathematica
    c[p_] := Block[{k=1, q = 5*p+6}, While[PrimeQ[q], q = 5*q+6; k++]; k]; a[n_] := Block[{p = 2}, While[c[p] < n, p = NextPrime[p]]; p]; Array[a, 7] (* Giovanni Resta, Mar 22 2017 *)

Extensions

a(7) corrected and a(8)-a(10) from Donovan Johnson, Sep 27 2008
a(11)-a(12) from John Cerkan, Jan 11 2017
a(13)-a(15) from Giovanni Resta, Mar 22 2017

A084961 Initial prime of the first prime chain of length n under the iteration x->6x+5.

Original entry on oeis.org

2, 2, 2, 2, 11, 13, 115571, 23586221, 53165771, 3398453717, 615502598677, 32504183957101, 164289842304587
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = cx + d.
a(11) > 10175130529. [Donovan Johnson, Sep 27 2008]

Examples

			a(3) = 2 since 2, f(2) = 17, and f(17) = 107 are primes when f(x) = 6*x + 5.
		

Crossrefs

Programs

  • Mathematica
    c[p_] := Block[{k=1, q=6*p+5}, While[ PrimeQ[q], q = 6*q+5; k++]; k]; a[n_] := Block[ {p=2}, While[c[p] < n, p = NextPrime[p]]; p]; Array[a, 7] (* Giovanni Resta, Mar 22 2017 *)

Extensions

a(8)-a(10) from Donovan Johnson, Sep 27 2008
a(11)-a(12) from John Cerkan, Jan 11 2017
a(13) from Giovanni Resta, Mar 22 2017

A064812 Smallest prime p such that the infinite sequence {p, p'=2p-1, p''=2p'-1, ...} begins with a string of exactly n primes.

Original entry on oeis.org

5, 3, 2, 2131, 1531, 33301, 16651, 15514861, 857095381, 205528443121, 1389122693971, 216857744866621, 758083947856951, 107588900851484911, 69257563144280941
Offset: 1

Views

Author

David Terr, Oct 21 2002

Keywords

Comments

Chains of length n of nearly doubled primes.
Smallest prime beginning a complete Cunningham chain of length n of the second kind. (For the first kind see A005602.) - Jonathan Sondow, Oct 30 2015

Examples

			a(3) = 2 because 2 is the smallest prime such that the sequence {2, 3, 5, 9, ...} begins with exactly 3 primes, where each term in the sequence is twice the preceding term minus 1.
		

Crossrefs

A231814 Squarefree numbers (from A005117) with prime divisors in a 2p-1 progression.

Original entry on oeis.org

6, 15, 30, 91, 703, 1891, 2701, 12403, 18721, 38503, 49141, 51319, 79003, 88831, 104653, 146611, 188191, 218791, 226801, 269011, 286903, 385003, 497503, 597871, 665281, 721801, 736291, 765703, 873181, 954271, 1056331, 1314631, 1373653, 1537381, 1755001, 1869211
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2013

Keywords

Comments

Squarefree numbers with k >= 2 prime factors of the form p_1 * p_2 * ... * p_k, where p_1 < p_2 < ... < p_k = primes with p_k = 2 * p_(k-1) - 1.
Each of these numbers is divisible by the arithmetic mean of its proper divisors.
Supersequence of A129521 (numbers of the form p*q, p and q prime with q=2*p-1; see A005382 and A005383).

Examples

			51319 = 19*37*73 where 37 = 2*19 - 1, 73 = 2*37 - 1.
		

Crossrefs

Cf. A057330 (first prime for such numbers that has n factors).

Programs

  • Maple
    N:= 10^7: # for terms <= N
    p:= 1: S:= NULL: count:= 0:
    do
      p:= nextprime(p);
      if p*(2*p-1) > N then break fi;
      q:= p; x:= p;
      do
        q:= 2*q-1;
        if not isprime(q) then break fi;
        x:= x*q;
        if x > N then break fi;
        S:= S,x; count:= count+1;
      od;
    od:
    sort([S]); # Robert Israel, Mar 24 2023
  • Mathematica
    geomQ[lst_] := Module[{x = lst - 1}, x = x/x[[1]]; Log[2, x] + 1 == Range[Length[x]]]; Select[Range[2, 1000000], ! PrimeQ[#] && SquareFreeQ[#] && geomQ[Transpose[FactorInteger[#]][[1]]] &] (* T. D. Noe, Nov 14 2013 *)

A231816 a(n) = the smallest squarefree number (A005117) with n prime factors in a 2p-1 progression.

Original entry on oeis.org

2, 6, 30, 351137972965951, 8596208716179446431, 698211042943963834650959743951, 744014385572130806167897354113929551, 901203402294977554329263775346819632824908852456695769189267773301
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2013

Keywords

Comments

Smallest squarefree numbers with n >= 2 prime divisors of the form p_1 * p_2 * … * p_n, where p_1 < p_2 < … < p_k = primes with p_k = 2 * p_(k-1) - 1.
Subsequence of A231814.

Examples

			8596208716179446431 = 1531*3061*6121*12241*24481, where 3061 = 2*1531 - 1, 6121 = 2*3061 - 1, 12241 = 2*6121 - 1, 24481 = 2*12241 - 1.
		

Crossrefs

Cf. A057330 (first prime for such numbers that has n factors).

A128509 Initial prime, greater than 7, of a prime chain of length n under the iteration x -> 2x-7.

Original entry on oeis.org

11, 13, 13, 367, 4987, 9697, 78007, 13356127, 13356127, 6753069187, 218617084627, 35679817649197, 92975416840027
Offset: 1

Views

Author

Zak Seidov, May 07 2007

Keywords

Comments

From the definition we see that the sequence is monotonic (but not strictly) increasing. The sequence is a generalized Cunningham chain. - Stefan Steinerberger, May 12 2007

Examples

			a(2) = 13 because 13, 13*2-7=19 and 19*2-7=31 are primes.
		

Crossrefs

Programs

  • Mathematica
    k = 5; For[n = 2, n <= 10, n++, While[Union[PrimeQ[NestList[2# - 7 &, Prime[k], n]], PrimeQ[NestList[2# - 7 &, Prime[k], n]]] != {True}, k++ ]; Print[Prime[k]]] (* Stefan Steinerberger, May 12 2007 *)

Extensions

Edited by Stefan Steinerberger, May 12 2007
Edited by Don Reble, Nov 07 2007
Previous Showing 11-20 of 22 results. Next