cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 101 results. Next

A056674 Number of squarefree divisors which are not unitary. Also number of unitary divisors which are not squarefree.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 2, 2, 0, 0, 0, 2, 1, 0, 0, 4, 0, 0, 0, 2, 0, 4, 0, 2, 0, 0, 0, 2, 0, 2, 2, 3, 0, 0, 0, 2, 0
Offset: 1

Views

Author

Labos Elemer, Aug 10 2000

Keywords

Comments

Numbers of unitary and of squarefree divisors are identical, although the 2 sets are usually different, so sizes of parts outside overlap are also equal to each other.

Examples

			For n = 252, it has 18 divisors, 8 are unitary, 8 are squarefree, 2 belong to both classes, so 6 are squarefree but not unitary, thus a(252) = 6. The set {2,3,14,21,42} forms squarefree but non-unitary while the set {4,9,36,28,63,252} of same size gives the set of not squarefree but unitary divisors.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, And[SquareFreeQ@ #, ! CoprimeQ[#, n/#]] &], {n, 105}] (* Michael De Vlieger, Jul 19 2017 *)
    f[p_, e_] := If[e == 1, 2, 1]; a[1] = 0; a[n_] := 2^Length[fct = FactorInteger[n]] - Times @@ (f @@@ fct); Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)
  • PARI
    A034444(n) = (2^omega(n));
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); } \\ Charles R Greathouse IV, Aug 13 2013
    A055231(n) = n/A057521(n);
    A056674(n) = (A034444(n) - numdiv(A055231(n)));
    \\ Or:
    A055229(n) = { my(c=core(n)); gcd(c, n/c); }; \\ Charles R Greathouse IV, Nov 20 2012
    A056674(n) = ((2^omega(n)) - numdiv(core(n)/A055229(n)));
    \\ Antti Karttunen, Jul 19 2017
    
  • PARI
    a(n) = {my(f = factor(n), e = f[,2]); 2^omega(f) - prod(i = 1, #e, if(e[i] == 1, 2, 1));} \\ Amiram Eldar, Jul 24 2024
    
  • Python
    from sympy import gcd, primefactors, divisor_count
    from sympy.ntheory.factor_ import core
    def a055229(n):
        c=core(n)
        return gcd(c, n//c)
    def a056674(n): return 2**len(primefactors(n)) - divisor_count(core(n)//a055229(n))
    print([a056674(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 19 2017

Formula

a(n) = A034444(n) - A056671(n) = A034444(n) - A000005(A055231(n)) = A034444(n) - A000005(A007913(n)/A055229(n)).

A254503 Möbius transform of A034448.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 4, 6, 10, 11, 6, 13, 14, 15, 8, 17, 12, 19, 10, 21, 22, 23, 12, 20, 26, 18, 14, 29, 30, 31, 16, 33, 34, 35, 12, 37, 38, 39, 20, 41, 42, 43, 22, 30, 46, 47, 24, 42, 40, 51, 26, 53, 36, 55, 28, 57, 58, 59, 30, 61, 62, 42, 32, 65, 66, 67, 34, 69, 70
Offset: 1

Views

Author

Álvar Ibeas, Jan 31 2015

Keywords

Crossrefs

Cf. A000010 (totient), A001694 (powerful), A005117 (squarefree), A034448 (usigma), A057521 (powerful part), A055231 (unitary squarefree kernel).

Programs

  • Mathematica
    Table[DivisorSum[n, MoebiusMu[#]^2*EulerPhi[n/#] &, CoprimeQ[n/#, #] &], {n, 70}] (* Michael De Vlieger, Jun 27 2018 *)
    f[p_, e_] := (p - 1)*p^(e - 1); f[p_, 1] := p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); for (i=1, #f~, if ((e=f[i, 2]) > 1, f[i, 1] = eulerphi(f[i, 1]^e); f[i, 2] = 1);); factorback(f);} \\ Michel Marcus, Feb 06 2015
    
  • PARI
    a(n) = sumdiv(n, d, if(gcd(n/d, d) == 1, moebius(d)^2 * eulerphi(n/d))); \\ Daniel Suteu, Jun 27 2018

Formula

a(n) = phi(A057521(n)) * A055231(n).
If n is squarefree, a(n) = n; if n is powerful, a(n) = phi(n).
Multiplicative with a(p) = p; a(p^e) = phi(p^e), for e > 1.
Dirichlet g.f.: zeta(s-1) / zeta(2s-1).
a(n) = Sum_{d|n, gcd(n/d, d) = 1} mu(d)^2 * phi(n/d). - Daniel Suteu, Jun 27 2018
Sum_{k=1..n} a(k) ~ n^2 / (2*zeta(3)). - Vaclav Kotesovec, Jan 11 2019

A338540 Numbers having exactly three non-unitary prime factors.

Original entry on oeis.org

900, 1764, 1800, 2700, 3528, 3600, 4356, 4500, 4900, 5292, 5400, 6084, 6300, 7056, 7200, 8100, 8712, 8820, 9000, 9800, 9900, 10404, 10584, 10800, 11025, 11700, 12100, 12168, 12348, 12600, 12996, 13068, 13500, 14112, 14400, 14700, 15300, 15876, 16200, 16900, 17100
Offset: 1

Views

Author

Amiram Eldar, Nov 01 2020

Keywords

Comments

Numbers k such that A056170(k) = A001221(A057521(k)) = 3.
Numbers divisible by the squares of exactly three distinct primes.
Subsequence of A318720 and first differs from it at n = 123.
The asymptotic density of this sequence is (eta_1^3 - 3*eta_1*eta_2 + 2*eta_3)/Pi^2 = 0.0032920755..., where eta_j = Sum_{p prime} 1/(p^2-1)^j (Pomerance and Schinzel, 2011).

Examples

			900 = 2^2 * 3^2 * 5^2 is a term since it has exactly 3 prime factors, 2, 3 and 5, that are non-unitary.
		

Crossrefs

Subsequence of A013929, A318720 and A327877.
Cf. A154945 (eta_1), A324833 (eta_2), A324834 (eta_3).

Programs

  • Mathematica
    Select[Range[17000], Count[FactorInteger[#][[;;,2]], _?(#1 > 1 &)] == 3 &]

A338541 Numbers having exactly four non-unitary prime factors.

Original entry on oeis.org

44100, 88200, 108900, 132300, 152100, 176400, 213444, 217800, 220500, 260100, 264600, 298116, 304200, 308700, 324900, 326700, 352800, 396900, 426888, 435600, 441000, 456300, 476100, 485100, 509796, 520200, 529200, 544500, 573300, 592900, 596232, 608400, 617400
Offset: 1

Views

Author

Amiram Eldar, Nov 01 2020

Keywords

Comments

Numbers k such that A056170(k) = A001221(A057521(k)) = 4.
Numbers divisible by the squares of exactly four distinct primes.
The asymptotic density of this sequence is (eta_1^4 - 6*eta_1^2*eta_2 + 3*eta_2^2 + 8*eta_1*eta_3 - 6*eta_4)/(4*Pi^2) = 0.0000970457..., where eta_j = Sum_{p prime} 1/(p^2-1)^j (Pomerance and Schinzel, 2011).

Examples

			44100 = 2^2 * 3^2 * 5^2 * 7^2 is a term since it has exactly 4 prime factors, 2, 3, 5 and 7, that are non-unitary.
		

Crossrefs

Subsequence of A013929 and A318720.
Cf. A154945 (eta_1), A324833 (eta_2), A324834 (eta_3), A324835 (eta_4).

Programs

  • Mathematica
    Select[Range[620000], Count[FactorInteger[#][[;;,2]], _?(#1 > 1 &)] == 4 &]

A338542 Numbers having exactly five non-unitary prime factors.

Original entry on oeis.org

5336100, 7452900, 10672200, 12744900, 14905800, 15920100, 16008300, 18404100, 21344400, 22358700, 23328900, 25489800, 26680500, 29811600, 31472100, 31840200, 32016600, 36072036, 36808200, 37088100, 37264500, 37352700, 38234700, 39312900, 42380100, 42688800, 43956900
Offset: 1

Views

Author

Amiram Eldar, Nov 01 2020

Keywords

Comments

Numbers k such that A056170(k) = A001221(A057521(k)) = 5.
Numbers divisible by the squares of exactly five distinct primes.
The asymptotic density of this sequence is (eta_1^5 - 10*eta_1^3*eta_2 + 15*eta_1*eta_2^2 + 20*eta_1^2*eta_3 - 20*eta_2*eta_3 - 30*eta_1*eta_4 + 24*eta_5)/(20*Pi^2) = 0.0000015673..., where eta_j = Sum_{p prime} 1/(p^2-1)^j (Pomerance and Schinzel, 2011).

Examples

			5336100 = 2^2 * 3^2 * 5^2 * 7^2 * 11^2 is a term since it has exactly 5 prime factors, 2, 3, 5, 7 and 11, that are non-unitary.
		

Crossrefs

Subsequence of A013929, A318720 and A327877.
Cf. A154945 (eta_1), A324833 (eta_2), A324834 (eta_3), A324835 (eta_4), A324836 (eta_5).

Programs

  • Mathematica
    Select[Range[2*10^7], Count[FactorInteger[#][[;;,2]], _?(#1 > 1 &)] == 5 &]

A349442 Dirichlet convolution of A000027 (the identity function) with A349350 (Dirichlet inverse of the powerful part of n).

Original entry on oeis.org

1, 1, 2, -1, 4, 2, 6, -3, -2, 4, 10, -2, 12, 6, 8, -1, 16, -2, 18, -4, 12, 10, 22, -6, -4, 12, -16, -6, 28, 8, 30, 5, 20, 16, 24, 2, 36, 18, 24, -12, 40, 12, 42, -10, -8, 22, 46, -2, -6, -4, 32, -12, 52, -16, 40, -18, 36, 28, 58, -8, 60, 30, -12, 7, 48, 20, 66, -16, 44, 24, 70, 6, 72, 36, -8, -18, 60, 24, 78, -4
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2021

Keywords

Comments

Multiplicative because both A000027 and A349350 are.

Crossrefs

Cf. A000027, A057521, A349350, A349441 (Dirichlet inverse), A349443 (sum with it).

Programs

  • PARI
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521
    memoA349350 = Map();
    A349350(n) = if(1==n,1,my(v); if(mapisdefined(memoA349350,n,&v), v, v = -sumdiv(n,d,if(dA057521(n/d)*A349350(d),0)); mapput(memoA349350,n,v); (v)));
    A349442(n) = sumdiv(n,d,d*A349350(n/d));

Formula

a(n) = Sum_{d|n} d * A349350(n/d).

A365552 The number of exponentially odd divisors of the powerful part of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 08 2023

Keywords

Comments

First differs from A095691 at n = 512.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, Floor[(e + 3)/2]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x == 1, 1, (x+3)\2), factor(n)[, 2]));

Formula

a(n) = A322483(A057521(n)).
Multiplicative with a(p) = 1 and a(p^e) = floor((e+3)/2) for e >= 2.
Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 + 1/p^(3*s) - 1/p^(4*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) * Product_{p prime} (1 + 1/p^3 - 1/p^4) = 1.80989829762278336163... .

A375341 The maximum exponent in the prime factorization of the numbers that have exactly one non-unitary prime factor.

Original entry on oeis.org

2, 3, 2, 2, 4, 2, 2, 3, 2, 3, 2, 5, 3, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 6, 2, 2, 2, 4, 4, 2, 3, 2, 2, 5, 2, 2, 3, 4, 2, 2, 3, 2, 2, 3, 2, 7, 2, 3, 3, 2, 2, 2, 2, 3, 2, 2, 5, 4, 2, 3, 2, 2, 2, 2, 4, 3, 2, 3, 6, 2, 2, 2, 4, 2, 2, 5, 2, 3, 2, 2, 4, 2, 5, 2, 2, 3, 3, 8, 2, 2, 3, 2, 3, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3
Offset: 1

Views

Author

Amiram Eldar, Aug 12 2024

Keywords

Comments

The positive terms in A375339.

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{e = Select[FactorInteger[n][[;; , 2]], # > 1 &]}, If[Length[e] == 1, e[[1]], Nothing]]; Array[s, 300]
  • PARI
    lista(kmax) = {my(e); for(k = 1, kmax, e = select(x -> x > 1, factor(k)[,2]); if(#e == 1, print1(e[1], ", ")));}

Formula

a(n) = A051903(A190641(n)).
a(n) = A005361(A190641(n)).
a(n) = A375339(A190641(n)).
a(n) = A132349(A057521(A190641(n))).
a(n) = 2 if and only if A190641(n) is in A060687.
a(n) = 3 if and only if A190641(n) is in A048109.
a(n) <= 3 if and only if A190641(n) is in A082293.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} (2*p-1)/((p-1)*(p^2-1)) / Sum_{p prime} 1/(p^2-1) = A375340 / A154945 = 2.74622231282166656595... .
Asymptotic second raw moment: = Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)^2 = Sum_{p prime} (4*p^2-3*p+1)/((p-1)^3*(p+1)) / Sum_{p prime} 1/(p^2-1) = 9.064902009520365378603... .

A382061 Numbers whose number of divisors is divisible by their number of unitary divisors.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97
Offset: 1

Views

Author

Amiram Eldar, Mar 14 2025

Keywords

Comments

Numbers k such that A034444(k) | A000005(k).
The criterion according to which a number belongs to this sequence depends only on the prime signature of this number: if {e_1, e_2, ... } are the exponents in the prime factorization of k then k is a term if and only if A000005(k)/A344444(k) = Product_{i} (e_i + 1)/2 is an integer.
The exponentially odd numbers (A268335) are all terms, since their prime factorization has only odd exponents e_i, so (e_i + 1)/2 is an integer. This sequence first differs from A268335 at n = 53: a(53) = 72 = 2^3 * 3^2 is not a term of A268335. The next terms that are not in A268335 are 108, 200, 360, 392, 432, 500, ... .
All the squarefree numbers (A005117, which is a subsequence of A268335) are terms. These are the numbers k such that A034444(k) = A000005(k).
A number k is a term if and only if the powerful part of k, A057521(k), is a term. Therefore, the primitive terms of this sequence are the powerful terms, A382062.
The asymptotic density of this sequence is Sum_{n>=1} f(A382062(n)) = 0.72201619..., where f(n) = (n/zeta(2)) * Product_{prime p|n} (p/(p+1)).
The asymptotic density of a few subsequences can be evaluated more easily. For example:
1) Powerful numbers that are exponentially odd (A335988): When summing only over these numbers, the formula for the asymptotic density gives the density of the exponentially odd numbers: Product_{p prime} (1 - 1/(p*(p+1))) = 0.704442... (A065463).
2) Numbers of the form p^(2*k) * q^(2*m+1), where k and m >= 1, and p != q are primes: When summing only over these numbers, the density of the numbers whose powerful part is of this form is ((Sum_{p prime} p/((p^2-1)*(p+1))) * (Sum_{p prime} p^2/((p^4-1)*(p+1))) - Sum_{p prime} p^3/((p^2-1)^2*(p^2+1)*(p+1)^2)) / zeta(2) = 0.017174455422470834821... .

Crossrefs

Programs

  • Mathematica
    q[k_] := Divisible[DivisorSigma[0, k], 2^PrimeNu[k]]; Select[Range[100], q]
  • PARI
    isok(k) = {my(f = factor(k)); !(numdiv(f) % (1<
    				

Formula

2 is a term since A000005(2) = A034444(2) = 2, so 2 | 2.
24 is a term since A000005(24) = 8, A034444(24) = 4, and 4 | 8.

A382889 The largest square dividing the n-th cubefree number.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 9, 1, 1, 4, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 25, 1, 4, 1, 1, 1, 1, 1, 1, 36, 1, 1, 1, 1, 1, 1, 4, 9, 1, 1, 49, 25, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 9, 1, 1, 1, 4, 1, 1, 1, 1, 1, 25, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 1, 49, 9, 100
Offset: 1

Views

Author

Amiram Eldar, Apr 07 2025

Keywords

Comments

Also, the powerful part of the n-th cubefree number.
All the terms are squares of squarefree numbers (A062503).

Crossrefs

Cf. A002117, A004709, A008833, A057521, A062503, A371188 (positions of 1's).
Similar sequences: A382888, A382890, A382891.

Programs

  • Mathematica
    f[p_, e_] := p^If[e == 1, 0, 2]; s[n_] := Module[{fct = FactorInteger[n]}, If[AllTrue[fct[[;; , 2]], # < 3 &], Times @@ f @@@ fct, Nothing]]; Array[s, 100]
  • PARI
    list(lim) = {my(f); print1(1, ", "); for(k = 2, lim, f = factor(k); if(vecmax(f[, 2]) < 3, print1(prod(i = 1, #f~, f[i, 1]^if(f[i, 2] == 1, 0, 2)), ", ")));}

Formula

a(n) = A008833(A004709(n)).
a(n) = A057521(A004709(n)).
a(n) = A382890(n)^2.
a(n) = A004709(n)/A382891(n).
a(n) = (A004709(n)/A382888(n))^2.
a(A371188(n)) = 1.
Sum_{k=1..n} a(k) ~ c * n^(3/2) / 3, where c = zeta(3)^(3/2) * Product_{p prime} (1 + 1/p^(3/2) - 1/p^2 - 1/p^(5/2)) = 1.48513488319516447978... .
Previous Showing 61-70 of 101 results. Next