cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A238303 Triangle T(n,k), 0<=k<=n, read by rows given by T(n,0) = 1, T(n,k) = 2 if k>0.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Philippe Deléham, Feb 24 2014

Keywords

Comments

Row sums are A005408(n).
Diagonals sums are A109613(n).
Sum_{k=0..n} T(n,k)*x^k = A033999(n), A000012(n), A005408(n), A036563(n+2), A058481(n+1), A083584(n), A137410(n), A233325(n), A233326(n), A233328(n), A211866(n+1), A165402(n+1) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A151575(n), A000012(n), A040000(n), A005408(n), A033484(n), A048473(n), A020989(n), A057651(n), A061801(n), A238275(n), A238276(n), A138894(n), A090843(n), A199023(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively.
Sum_{k=0..n} T(n,k)^x = A000027(n+1), A005408(n), A016813(n), A017077(n) for x = 0, 1, 2, 3 respectively.
Sum_{k=0..n} k*T(n,k) = A002378(n).
Sum_{k=0..n} A000045(k)*T(n,k) = A019274(n+2).
Sum_{k=0..n} A000142(k)*T(n,k) = A066237(n+1).

Examples

			Triangle begins:
1;
1, 2;
1, 2, 2;
1, 2, 2, 2;
1, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2;
...
		

Crossrefs

Cf. Diagonals: A040000.
Cf. Columns: A000012, A007395.
First differences of A001614.

Programs

Formula

T(n,0) = A000012(n) = 1, T(n+k,k) = A007395(n) = 2 for k>0.

Extensions

Data section extended to a(104) by Antti Karttunen, Jan 19 2025

A165755 a(n) = (5-3*5^n)/2.

Original entry on oeis.org

1, -5, -35, -185, -935, -4685, -23435, -117185, -585935, -2929685, -14648435, -73242185, -366210935, -1831054685, -9155273435, -45776367185, -228881835935, -1144409179685, -5722045898435, -28610229492185
Offset: 0

Views

Author

Philippe Deléham, Sep 26 2009

Keywords

Programs

  • Mathematica
    (5-3*5^Range[0,20])/2 (* or *) LinearRecurrence[{6,-5},{1,-5},20] (* Harvey P. Dale, Apr 18 2013 *)
  • PARI
    x='x+O('x^99); Vec((1-11*x)/(1-6*x+5*x^2)) \\ Altug Alkan, Apr 07 2016

Formula

a(n) = 5*a(n-1) - 10, a(0)=1.
a(n) = 6*a(n-1)-5*a(n-2), a(0)= 1, a(1)= -5, for n>1.
G.f.: (1-11x)/(1-6x+5x^2).
a(n) = Sum_{0<=k<=n} A112555(n,k)*(-6)^(n-k).
a(n) = (-5)*A057651(n-1).
E.g.f.: (1/2)*(5*exp(x) - 3*exp(5*x)). - G. C. Greubel, Apr 07 2016

A198764 6*5^n-1.

Original entry on oeis.org

5, 29, 149, 749, 3749, 18749, 93749, 468749, 2343749, 11718749, 58593749, 292968749, 1464843749, 7324218749, 36621093749, 183105468749, 915527343749, 4577636718749, 22888183593749, 114440917968749, 572204589843749, 2861022949218749
Offset: 0

Views

Author

Vincenzo Librandi, Oct 30 2011

Keywords

Crossrefs

Programs

  • Magma
    [6*5^n-1: n in [0..30]]
  • Mathematica
    CoefficientList[Series[(5 - x)/(1 - 6*x + 5*x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 04 2013 *)
    6*5^Range[0,30]-1 (* or *) LinearRecurrence[{6,-5},{5,29},30] (* Harvey P. Dale, Dec 21 2014 *)

Formula

a(n) = 5*a(n-1)+4.
a(n) = 6*a(n-1)-5*a(n-2), n>1.
G.f.: (5 - x)/(1 - 6*x + 5*x^2). - Vincenzo Librandi, Jan 04 2013

A238366 a(n) = 5*a(n-2) + 2, a(0) = 1, a(1) = 2.

Original entry on oeis.org

1, 2, 7, 12, 37, 62, 187, 312, 937, 1562, 4687, 7812, 23437, 39062, 117187, 195312, 585937, 976562, 2929687, 4882812, 14648437, 24414062, 73242187, 122070312, 366210937, 610351562, 1831054687, 3051757812, 9155273437, 15258789062, 45776367187, 76293945312
Offset: 0

Views

Author

Philippe Deléham, Feb 25 2014

Keywords

Comments

Row sums of triangle in A152717.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,5,-5},{1,2,7},40] (* Harvey P. Dale, Jul 18 2024 *)

Formula

G.f.: (1+x)/((1-x)*(1-5*x^2)).
a(n) = Sum_{k=0..n} A152717(n,k).
a(2*n) = A057651(n).
a(2*n+1) = A125831(n+1) = 2*A003463(n+1).
a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3), a(0) = 1, a(1) = 2, a(2) = 7.
a(n) = A198306(n+1) for n > 1. - Georg Fischer, Oct 23 2018

A090842 Square array of numbers read by antidiagonals where T(n,k) = ((k+3)*(k+2)^n-2)/(k+1).

Original entry on oeis.org

1, 1, 4, 1, 5, 10, 1, 6, 17, 22, 1, 7, 26, 53, 46, 1, 8, 37, 106, 161, 94, 1, 9, 50, 187, 426, 485, 190, 1, 10, 65, 302, 937, 1706, 1457, 382, 1, 11, 82, 457, 1814, 4687, 6826, 4373, 766, 1, 12, 101, 658, 3201, 10886, 23437, 27306, 13121, 1534, 1, 13, 122, 911, 5266
Offset: 0

Views

Author

Paul Barry, Dec 09 2003

Keywords

Comments

Nodes on a tree with degree k interior nodes and degree 1 boundary nodes.

Examples

			Rows begin:
  1 4 10 22 ...
  1 5 17 53 ...
  1 6 26 106 ...
  1 7 37 187 ...
		

Crossrefs

Formula

The total number of nodes on a tree with degree k interior nodes and degree 1 boundary nodes is given by N(k, r) = (k*(k-1)^r-2)/(k-2).
G.f.: Sum_{k>=0} (1+x*y)/(1-x*y)/(1-(k+2)*x*y)*y^k. - Vladeta Jovovic, Dec 12 2003

A137215 a(n) = 3*(10^n) + (n^2 + 1)*(10^n - 1)/9.

Original entry on oeis.org

3, 32, 355, 4110, 48887, 588886, 7111107, 85555550, 1022222215, 12111111102, 142222222211, 1655555555542, 19111111111095, 218888888888870, 2488888888888867, 28111111111111086, 315555555555555527, 3522222222222222190, 39111111111111111075, 432222222222222222182
Offset: 0

Views

Author

Ctibor O. Zizka, Mar 06 2008

Keywords

Comments

Sequence generalized: a(n) = a(0)*(B^n) + F(n)* ((B^n)-1)/(B-1); a(0), B integers, F(n) arithmetic function.
Examples:
a(0) = 1, B = 10, F(n) = 1 gives A002275, F(n) = 2 gives A090843, F(n) = 3 gives A097166, F(n) = 4 gives A099914, F(n) = 5 gives A099915.
a(0) = 1, B = 2, F(n) = 1 gives A000225, F(n) = 2 gives A033484, F(n) = 3 gives A036563, F(n) = 4 gives A048487, F(n) = 5 gives A048488, F(n) = 6 gives A048489.
a(0) = 1, B = 3, F(n) = 1 gives A003462, F(n) = 2 gives A048473, F(n) = 3 gives A134931, F(n) = 4 gives A058481, F(n) = 5 gives A116952.
a(0) = 1, B = 4, F(n) = 1 gives A002450, F(n) = 2 gives A020989, F(n) = 3 gives A083420, F(n) = 4 gives A083597, F(n) = 5 gives A083584.
a(0) = 1, B = 5, F(n) = 1 gives A003463, F(n) = 2 gives A057651, F(n) = 3 gives A117617, F(n) = 4 gives A081655.
a(0) = 2, B = 10, F(n) = 1 gives A037559, F(n) = 2 gives A002276.

Examples

			a(3) = 3*10^3 + (3*3 + 1)*(10^3 - 1)/9 = 4110.
		

Crossrefs

Programs

  • Mathematica
    Table[3*10^n +(n^2 +1)*(10^n -1)/9, {n,0,30}] (* G. C. Greubel, Jan 05 2022 *)
  • PARI
    a(n) = 3*(10^n) + (n*n+1)*((10^n)-1)/9; \\ Jinyuan Wang, Feb 27 2020
    
  • Sage
    [3*10^n +(1+n^2)*(10^n -1)/9 for n in (0..30)] # G. C. Greubel, Jan 05 2022

Formula

a(n) = 3*(10^n) + (n^2 + 1)*(10^n - 1)/9.
O.g.f.: (3 - 67*x + 478*x^2 - 1002*x^3 + 850*x^4 - 100*x^5)/((1-x)^3 * (1-10*x)^3). - R. J. Mathar, Mar 16 2008

Extensions

More terms from R. J. Mathar, Mar 16 2008
More terms from Jinyuan Wang, Feb 27 2020

A198763 a(n) = 4*5^n-1.

Original entry on oeis.org

3, 19, 99, 499, 2499, 12499, 62499, 312499, 1562499, 7812499, 39062499, 195312499, 976562499, 4882812499, 24414062499, 122070312499, 610351562499, 3051757812499, 15258789062499, 76293945312499, 381469726562499, 1907348632812499
Offset: 0

Views

Author

Vincenzo Librandi, Oct 30 2011

Keywords

Crossrefs

Programs

  • Magma
    [4*5^n-1: n in [0..30]]
  • Mathematica
    CoefficientList[Series[(3 + x)/(1 - 6*x + 5*x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 04 2013 *)
    NestList[5#+4&,3,30] (* or *) LinearRecurrence[{6,-5},{3,19},30] (* Harvey P. Dale, Jul 03 2021 *)

Formula

a(n) = 5*a(n-1)+4.
a(n) = 6*a(n-1)-5*a(n-2), n>1.
G.f.: (3 + x)/(1 - 6*x + 5*x^2). - Vincenzo Librandi, Jan 04 2013

A198765 7*5^n-1.

Original entry on oeis.org

6, 34, 174, 874, 4374, 21874, 109374, 546874, 2734374, 13671874, 68359374, 341796874, 1708984374, 8544921874, 42724609374, 213623046874, 1068115234374, 5340576171874, 26702880859374, 133514404296874
Offset: 0

Views

Author

Vincenzo Librandi, Oct 30 2011

Keywords

Crossrefs

Programs

  • Magma
    [7*5^n-1: n in [0..30]];
  • Mathematica
    CoefficientList[Series[2*(3 - x)/(1 - 6*x + 5*x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 04 2013 *)
    7 * 5^Range[0, 19] - 1 (* Alonso del Arte, Dec 05 2013 *)

Formula

a(n) = 5*a(n-1) + 4.
a(n) = 6*a(n-1) - 5*a(n-2), n > 1.
G.f.: 2*(3 - x)/(1 - 6*x + 5*x^2). - Vincenzo Librandi, Jan 04 2013

A198766 a(n) = (7*5^n - 1)/2.

Original entry on oeis.org

3, 17, 87, 437, 2187, 10937, 54687, 273437, 1367187, 6835937, 34179687, 170898437, 854492187, 4272460937, 21362304687, 106811523437, 534057617187, 2670288085937, 13351440429687, 66757202148437, 333786010742187, 1668930053710937
Offset: 0

Views

Author

Vincenzo Librandi, Oct 30 2011

Keywords

Crossrefs

Programs

  • Magma
    [(7*5^n-1)/2: n in [0..30]];
  • Mathematica
    CoefficientList[Series[(3 - x)/(1 - 6*x + 5*x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 04 2013 *)
    LinearRecurrence[{6,-5},{3,17},30] (* Harvey P. Dale, Jan 23 2015 *)

Formula

a(n) = 5*a(n-1)+2.
a(n) = 6*a(n-1)-5*a(n-2), n>1.
G.f.: (3 - x)/(1 - 6*x + 5*x^2). - Vincenzo Librandi, Jan 04 2013
E.g.f.: exp(x)*(7*exp(4*x) - 1)/2. - Stefano Spezia, Mar 08 2025

A198767 8*5^n-1.

Original entry on oeis.org

7, 39, 199, 999, 4999, 24999, 124999, 624999, 3124999, 15624999, 78124999, 390624999, 1953124999, 9765624999, 48828124999, 244140624999, 1220703124999, 6103515624999, 30517578124999, 152587890624999, 762939453124999
Offset: 0

Views

Author

Vincenzo Librandi, Oct 30 2011

Keywords

Crossrefs

Programs

  • Magma
    [8*5^n-1: n in [0..30]];
  • Mathematica
    CoefficientList[Series[(7 - 3*x)/(1 - 6*x + 5*x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 04 2013 *)

Formula

a(n) = 5*a(n-1)+4.
a(n) = 6*a(n-1)-5*a(n-2), n>1.
G.f.: (7 - 3*x)/(1 - 6*x + 5*x^2). - Vincenzo Librandi, Jan 04 2013
Previous Showing 11-20 of 24 results. Next