cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 137 results. Next

A376651 Points of upward concavity in the sequence of composite numbers (A002808).

Original entry on oeis.org

4, 8, 12, 17, 23, 26, 30, 35, 40, 46, 49, 55, 58, 63, 70, 73, 77, 81, 94, 97, 102, 112, 118, 123, 126, 131, 136, 146, 150, 162, 173, 176, 180, 185, 195, 200, 205, 210, 216, 219, 229, 242, 245, 249, 262, 267, 276, 280, 285, 292, 297, 302, 305, 310, 317, 320
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2024

Keywords

Comments

These are points at which the second differences (A073445) are positive.
Also positions of strict ascents in the first differences (A073783) of composite numbers (A002808).

Examples

			The composite numbers are (A002808):
  4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
  2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ...
with first differences (A073445):
  0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ...
with positive terms at (A376651):
  4, 8, 12, 17, 23, 26, 30, 35, 40, 46, 49, 55, 58, 63, 70, 73, 77, 81, 94, 97, ...
		

Crossrefs

The version for A000002 is A022297, negative A156242.
Partitions into composite numbers are counted by A023895, factorizations A050370.
For first differences we had A065310 or A073783, ones A375929.
These are the positions of positive terms in A073445, negative A376652.
For prime instead of composite we have A258025, negative A258026.
For zero second differences (instead of positive) we have A376602.
For composite numbers: A002808 (terms), A073783 (first differences), A073445 (second differences), A376602 (inflections and undulations), A376603 (nonzero curvature), A376652 (concave-down).

Programs

  • Mathematica
    Join@@Position[Sign[Differences[Select[Range[1000],CompositeQ],2]],1]

A376652 Points of downward concavity in the sequence of composite numbers (A002808).

Original entry on oeis.org

2, 6, 10, 13, 19, 24, 28, 31, 36, 42, 47, 51, 56, 59, 64, 71, 75, 79, 82, 95, 98, 104, 114, 119, 124, 127, 132, 138, 148, 152, 163, 174, 178, 181, 187, 196, 201, 206, 212, 217, 221, 230, 243, 247, 250, 263, 268, 278, 281, 286, 293, 298, 303, 306, 311, 318, 321
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2024

Keywords

Comments

These are points at which the second differences (A073445) are negative.
Also positions of strict descents in the first differences (A073783) of composite numbers (A002808).

Examples

			The composite numbers are (A002808):
  4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
  2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ...
with second differences (A073445):
  0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ...
with negative terms at (A376651):
  2, 6, 10, 13, 19, 24, 28, 31, 36, 42, 47, 51, 56, 59, 64, 71, 75, 79, 82, 95, 98, ...
		

Crossrefs

The version for A000002 is A156242, positive A022297.
Partitions into composite numbers are counted by A023895, factorizations A050370.
For first differences we had A065310 or A073783, ones A375929.
These are the positions of negative terms in A073445, positive A376651.
For prime instead of composite we have A258026, positive A258025.
For zero second differences instead of negative we have A376602.
For composite numbers: A002808 (terms), A073783 (first differences), A073445 (second differences), A376602 (inflections and undulations), A376603 (nonzero curvature), A376651 (concave-up).

Programs

  • Maple
    Comps:= remove(isprime, [seq(i,i=4..1000)]):
    D1:= Comps[2..-1]-Comps[1..-2]:
    D2:= D1[2..-1]-D1[1..-2]:
    select(t -> D2[t] < 0, [$1..nops(D2)]); # Robert Israel, Nov 06 2024
  • Mathematica
    Join@@Position[Sign[Differences[Select[Range[1000],CompositeQ],2]],-1]

A378251 Number of primes between consecutive perfect powers, zeros omitted.

Original entry on oeis.org

2, 2, 2, 3, 2, 4, 3, 4, 3, 5, 1, 3, 5, 5, 3, 1, 5, 1, 7, 5, 2, 4, 6, 7, 7, 5, 2, 6, 9, 8, 7, 8, 9, 8, 8, 6, 4, 9, 10, 9, 10, 7, 2, 9, 12, 11, 12, 6, 5, 9, 12, 11, 3, 10, 8, 2, 13, 15, 10, 11, 15, 7, 9, 12, 13, 11, 12, 17, 2, 11, 16, 16, 13, 17, 15, 14, 16, 15
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2024

Keywords

Comments

First differences of A377283 and A378365. Run-lengths of A378035 and A378249.
Perfect powers (A001597) are 1 and numbers with a proper integer root, complement A007916.

Examples

			The first number line below shows the perfect powers. The second shows each prime. To get a(n) we count the primes between consecutive perfect powers, skipping the cases where there are none.
-1-----4-------8-9------------16----------------25--27--------32------36----
===2=3===5===7======11==13======17==19======23==========29==31==========37==
		

Crossrefs

Same as A080769 with 0's removed (which were at positions A274605).
First differences of A377283 and A378365 (union of A378356).
Run-lengths of A378035 (union A378253) and A378249 (union A378250).
The version for nonprime prime powers is A378373, with zeros A067871.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289, run-lengths of A377468.
A007916 lists the non-perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A131605 lists perfect powers that are not prime powers.
A377432 counts perfect powers between primes, see A377434, A377436, A377466.

Programs

  • Maple
    N:= 10^6: # to use perfect powers up to N
    PP:= {1,seq(seq(i^j,j=2..ilog[i](N)),i=2..isqrt(N))}:
    PP:= sort(convert(PP,list)):
    M:= map(numtheory:-pi, PP):
    subs(0=NULL, M[2..-1]-M[1..-2]): # Robert Israel, Jan 23 2025
  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Length/@Split[Table[NestWhile[#+1&,Prime[n],radQ[#]&],{n,100}]]

A373670 Numbers k such that the k-th run-length A110969(k) of the sequence of non-prime-powers (A024619) is different from all prior run-lengths.

Original entry on oeis.org

1, 5, 7, 12, 18, 28, 40, 53, 71, 109, 170, 190, 198, 207, 236, 303, 394, 457, 606, 774, 1069, 1100, 1225, 1881, 1930, 1952, 2247, 2281, 3140, 3368, 3451, 3493, 3713, 3862, 4595, 4685, 6625, 8063, 8121, 8783, 12359, 12650, 14471, 14979, 15901, 17129, 19155
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2024

Keywords

Comments

The unsorted version is A373669.

Examples

			The maximal runs of non-prime-powers begin:
   1
   6
  10
  12
  14  15
  18
  20  21  22
  24
  26
  28
  30
  33  34  35  36
  38  39  40
  42
  44  45  46
  48
  50  51  52
  54  55  56  57  58
  60
So the a(n)-th runs begin:
   1
  14  15
  20  21  22
  33  34  35  36
  54  55  56  57  58
		

Crossrefs

For nonsquarefree runs we have A373199 (if increasing), firsts of A053797.
For squarefree antiruns see A373200, unsorted A373128, firsts of A373127.
For composite runs we have A373400, unsorted A073051, firsts of A176246.
For prime antiruns we have A373402.
For runs of non-prime-powers:
- length A110969, firsts A373669, sorted A373670 (this sequence):
- min A373676
- max A373677
- sum A373678
For runs of prime-powers:
- length A174965
- min A373673
- max A373674
- sum A373675
A000961 lists the powers of primes (including 1).
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists the non-prime-powers, without 1 A024619.

Programs

  • Mathematica
    t=Length/@Split[Select[Range[10000],!PrimePowerQ[#]&],#1+1==#2&];
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A377052 Antidiagonal-sums of the array A377051(n,k) = n-th term of k-th differences of powers of primes.

Original entry on oeis.org

1, 3, 4, 5, 6, 13, -6, 45, -50, 113, -98, 73, 274, -1159, 3563, -8707, 19024, -36977, 64582, -98401, 121436, -81961, -147383, 860871, -2709964, 7110655, -17077217, 38873213, -85085216, 179965720, -367884935, 725051361, -1372311916, 2481473639, -4257624155
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2024

Keywords

Comments

These are the row-sums of the triangle-version of A377051.

Examples

			The sixth antidiagonal of A377051 is (8, 1, -1, -2, -3, -4, -5), so a(6) = -6.
		

Crossrefs

The version for primes is A140119, noncomposites A376683, composites A377034.
For squarefree numbers we have A377039, nonsquarefree A377047.
These are the antidiagonal-sums of A377051.
The unsigned version is A377053.
For leaders we have A377054, for primes A007442 or A030016.
For first zero-positions we have A377055.
A version for partitions is A377056, cf. A175804, A053445, A281425, A320590.
A000040 lists the primes, differences A001223, seconds A036263.
A001597 lists perfect-powers, complement A007916.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.

Programs

  • Mathematica
    nn=20;
    t=Table[Differences[NestList[NestWhile[#+1&, #+1,!PrimePowerQ[#]&]&,1,2*nn],k],{k,0,nn}];
    Total/@Table[t[[j,i-j+1]],{i,nn},{j,i}]

A375929 Numbers k such that A002808(k+1) = A002808(k) + 1. In other words, the k-th composite number is 1 less than the next.

Original entry on oeis.org

3, 4, 7, 8, 11, 12, 14, 15, 16, 17, 20, 21, 22, 23, 25, 26, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 43, 44, 45, 46, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 72, 73, 76, 77, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2024

Keywords

Comments

Positions of 1's in A073783 (see also A054546, A065310).

Examples

			The composite numbers are 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, ... which increase by 1 after positions 3, 4, 7, 8, ...
		

Crossrefs

Positions in A002808 of each element of A068780.
The complement is A065890 shifted.
First differences are A373403 (except first).
The version for non-prime-powers is A375713, differences A373672.
The version for prime-powers is A375734, differences A373671.
The version for non-perfect-powers is A375740.
The version for nonprime numbers is A375926.
A000040 lists the prime numbers, differences A001223.
A000961 lists prime-powers (inclusive), differences A057820.
A002808 lists the composite numbers, differences A073783.
A018252 lists the nonprime numbers, differences A065310.
A046933 counts composite numbers between primes.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],CompositeQ]],1]
  • Python
    from sympy import primepi
    def A375929(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+bisection(lambda y:primepi(x+2+y))-2
        return bisection(f,n,n) # Chai Wah Wu, Sep 15 2024
    
  • Python
    # faster for initial segment of sequence
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        pic, prevc = 0, -1
        for i in count(4):
            if not isprime(i):
                if i == prevc + 1:
                    yield pic
                pic, prevc = pic+1, i
    print(list(islice(agen(), 10000))) # Michael S. Branicky, Sep 17 2024

Formula

a(n) = A375926(n) - 1.

A376653 Sorted positions of first appearances in the second differences of consecutive prime-powers inclusive (A000961).

Original entry on oeis.org

1, 4, 5, 10, 12, 18, 25, 45, 47, 48, 60, 68, 69, 71, 80, 118, 121, 178, 179, 199, 206, 207, 216, 244, 245, 304, 325, 327, 402, 466, 484, 605, 801, 880, 939, 1033, 1055, 1077, 1234, 1281, 1721, 1890, 1891, 1906, 1940, 1960, 1962, 2257, 2290, 2410, 2880, 3150
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2024

Keywords

Examples

			The prime-powers inclusive (A000961) are:
  1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, ...
with first differences (A057820):
  1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, ...
with first differences (A376596):
  0, 0, 0, 1, -1, 0, 1, 0, 1, -2, 1, 2, -2, 0, 0, 0, -1, 4, -1, -2, 2, -2, 2, 2, ...
with first appearances (A376653):
  1, 4, 5, 10, 12, 18, 25, 45, 47, 48, 60, 68, 69, 71, 80, 118, 121, 178, 179, 199, ...
		

Crossrefs

For first differences we had A057820, sorted firsts A376340(n)+1 (except first term).
These are the sorted positions of first appearances in A376596.
The exclusive version is a(n) - 1 = A376654(n), except first term.
For squarefree instead of prime-power we have A376655.
A000961 lists prime-powers inclusive, exclusive A246655.
A001597 lists perfect-powers, complement A007916.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.
A064113 lists positions of adjacent equal prime gaps.
For prime-powers inclusive: A057820 (first differences), A376597 (inflections and undulations), A376598 (nonzero curvature).
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376599 (non-prime-power).

Programs

  • Mathematica
    q=Differences[Select[Range[100],#==1||PrimePowerQ[#]&],2];
    Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&]

A377053 Antidiagonal-sums of the absolute value of the array A377051(n,k) = n-th term of k-th differences of powers of primes.

Original entry on oeis.org

1, 3, 4, 5, 6, 13, 24, 45, 80, 123, 174, 229, 382, 1219, 3591, 8849, 19288, 37899, 67442, 108323, 156054, 206733, 311525, 860955, 2710374, 7111657, 17080759, 38884849, 85124764, 180097856, 368321633, 726482493, 1377039690, 2496856437, 4306569569, 7016267449
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2024

Keywords

Comments

These are the row-sums of the absolute value of the triangle-version of A377051.

Examples

			The sixth antidiagonal of A377051 is (8, 1, -1, -2, -3, -4, -5), so a(6) = 24.
		

Crossrefs

The version for primes is A376681, noncomposites A376684, composites A377035.
For squarefree numbers we have A377040, nonsquarefree A377048.
This is the antidiagonal-sums of the absolute value of A377051.
The signed version is A377052.
For leaders we have A377054, for primes A007442 or A030016.
For first zero-positions we have A377055.
A version for partitions is A377056, cf. A175804, A053445, A281425, A320590.
A000040 lists the primes, differences A001223, seconds A036263.
A008578 lists the noncomposites, differences A075526.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.

Programs

  • Mathematica
    nn=20;
    t=Table[Differences[NestList[NestWhile[#+1&, #+1,!PrimePowerQ[#]&]&,1,2*nn],k],{k,0,nn}];
    Total/@Abs[Table[t[[j,i-j+1]],{i,nn},{j,i}]]

A377055 Position of first appearance of zero in the n-th differences of the prime-powers (A246655), or 0 if it does not appear.

Original entry on oeis.org

0, 0, 1, 1, 4, 48, 61, 83, 29, 57, 290, 121, 7115, 14207, 68320, 14652, 149979, 122704, 481540, 980376, 632441, 29973, 25343678, 50577935, 7512418, 210836403, 67253056, 224083553, 910629561, 931524323, 452509699, 2880227533, 396690327, 57954538325, 77572935454, 35395016473
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2024

Keywords

Examples

			The fourth differences of A246655 begin: 1, -3, 3, 0, -2, 2, ... so a(4) = 4.
		

Crossrefs

The version for primes is A376678, noncomposites A376855, composites A377037.
For squarefree numbers we have A377042, nonsquarefree A377050.
These are the positions of first zeros in each row of A377051.
For antidiagonal-sums we have A377052, absolute A377053.
For leaders we have A377054, for primes A007442 or A030016.
A000040 lists the primes, differences A001223, seconds A036263.
A000961 lists the powers of primes, differences A057820.
A008578 lists the noncomposites, differences A075526.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.
A246655 lists the prime-powers, differences A057820 (except first term).

Programs

  • Mathematica
    nn=10000;
    u=Table[Differences[Select[Range[nn],PrimePowerQ],k],{k,2,16}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    m=Table[Position[u[[k]],0][[1,1]], {k,mnrm[Union[First/@Position[u,0]]]}]

Extensions

a(12)-a(27) from Pontus von Brömssen, Oct 22 2024
a(28)-a(30) from Chai Wah Wu, Oct 23 2024
a(31)-a(35) from Lucas A. Brown, Nov 03 2024

A378250 Perfect-powers x > 1 such that it is not possible to choose a prime y and a perfect-power z satisfying x > y > z.

Original entry on oeis.org

4, 8, 16, 25, 32, 49, 64, 81, 100, 121, 128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849, 1936
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.

Examples

			The first number line below shows the perfect-powers. The second shows the primes. The third is a(n).
-1-----4-------8-9------------16----------------25--27--------32------36----
===2=3===5===7======11==13======17==19======23==========29==31==========37==
       4       8              16                25            32
The terms together with their prime indices begin:
     4: {1,1}
     8: {1,1,1}
    16: {1,1,1,1}
    25: {3,3}
    32: {1,1,1,1,1}
    49: {4,4}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
   100: {1,1,3,3}
   121: {5,5}
   128: {1,1,1,1,1,1,1}
   144: {1,1,1,1,2,2}
   169: {6,6}
   196: {1,1,4,4}
   216: {1,1,1,2,2,2}
   225: {2,2,3,3}
   243: {2,2,2,2,2}
   256: {1,1,1,1,1,1,1,1}
		

Crossrefs

A version for prime-powers (but starting with prime(k) + 1) is A345531.
The opposite is union of A378035, restriction of A081676.
Union of A378249, run-lengths are A378251.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A069623 counts perfect-powers <= n.
A076411 counts perfect-powers < n.
A131605 lists perfect-powers that are not prime-powers.
A377432 counts perfect-powers between primes, zeros A377436, positive A377283, postpositive A377466.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Union[Table[NestWhile[#+1&,Prime[n],radQ[#]&],{n,100}]]
Previous Showing 61-70 of 137 results. Next