cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A326213 Number of labeled n-vertex digraphs (with loops) not containing a (directed) Hamiltonian path.

Original entry on oeis.org

1, 2, 4, 128, 12352, 3826272, 3775441536
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2019

Keywords

Comments

A path is Hamiltonian if it passes through every vertex exactly once.

Crossrefs

The unlabeled case is A326224.
The case without loops is A326216.
Digraphs containing a Hamiltonian path are A326214.
Digraphs not containing a Hamiltonian cycle are A326220.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Tuples[Range[n],2]],FindHamiltonianPath[Graph[Range[n],DirectedEdge@@@#]]=={}&]],{n,0,3}] (* Mathematica 10.2+ *)

Formula

A002416(n) = a(n) + A326214(n).

Extensions

a(5)-a(6) from Bert Dobbelaere, Jun 11 2024

A326217 Number of labeled n-vertex digraphs (without loops) containing a Hamiltonian path.

Original entry on oeis.org

0, 0, 3, 48, 3324, 929005, 1014750550, 4305572108670
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2019

Keywords

Examples

			The a(3) = 48 edge-sets:
  {12,23}  {12,13,21}  {12,13,21,23}  {12,13,21,23,31}  {12,13,21,23,31,32}
  {12,31}  {12,13,23}  {12,13,21,31}  {12,13,21,23,32}
  {13,21}  {12,13,31}  {12,13,21,32}  {12,13,21,31,32}
  {13,32}  {12,13,32}  {12,13,23,31}  {12,13,23,31,32}
  {21,32}  {12,21,23}  {12,13,23,32}  {12,21,23,31,32}
  {23,31}  {12,21,31}  {12,13,31,32}  {13,21,23,31,32}
           {12,21,32}  {12,21,23,31}
           {12,23,31}  {12,21,23,32}
           {12,23,32}  {12,21,31,32}
           {12,31,32}  {12,23,31,32}
           {13,21,23}  {13,21,23,31}
           {13,21,31}  {13,21,23,32}
           {13,21,32}  {13,21,31,32}
           {13,23,31}  {13,23,31,32}
           {13,23,32}  {21,23,31,32}
           {13,31,32}
           {21,23,31}
           {21,23,32}
           {21,31,32}
           {23,31,32}
		

Crossrefs

The undirected case is A326206.
The unlabeled undirected case is A057864.
The case with loops is A326214.
Unlabeled digraphs with a Hamiltonian path are A326221.
Digraphs (without loops) not containing a Hamiltonian path are A326216.
Digraphs (without loops) containing a Hamiltonian cycle are A326219.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Select[Tuples[Range[n],2],UnsameQ@@#&]],FindHamiltonianPath[Graph[Range[n],DirectedEdge@@@#]]!={}&]],{n,4}] (* Mathematica 10.2+ *)

Formula

A053763(n) = a(n) + A326216(n).

Extensions

a(5)-a(7) from Bert Dobbelaere, Feb 21 2023

A326214 Number of labeled n-vertex digraphs (with loops) containing a (directed) Hamiltonian path.

Original entry on oeis.org

0, 0, 12, 384, 53184
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2019

Keywords

Comments

A path is Hamiltonian if it passes through every vertex exactly once.

Examples

			The a(2) = 12 edge-sets:
  {12}
  {21}
  {11,12}
  {11,21}
  {12,21}
  {12,22}
  {21,22}
  {11,12,21}
  {11,12,22}
  {11,21,22}
  {12,21,22}
  {11,12,21,22}
		

Crossrefs

The unlabeled case is A326221.
The undirected case is A326206.
The case without loops is A326217.
Digraphs not containing a Hamiltonian path are A326213.
Digraphs containing a Hamiltonian cycle are A326204.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Tuples[Range[n],2]],FindHamiltonianPath[Graph[Range[n],DirectedEdge@@@#]]!={}&]],{n,4}] (* Mathematica 10.2+ *)

Formula

A002416(n) = a(n) + A326213(n).

A326216 Number of labeled n-vertex digraphs (without loops) not containing a (directed) Hamiltonian path.

Original entry on oeis.org

1, 1, 1, 16, 772
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2019

Keywords

Comments

A path is Hamiltonian if it passes through every vertex exactly once.

Examples

			The a(3) = 16 edge-sets:
  {}  {12}  {12,13}
      {13}  {12,21}
      {21}  {12,32}
      {23}  {13,23}
      {31}  {13,31}
      {32}  {21,23}
            {21,31}
            {23,32}
            {31,32}
		

Crossrefs

Unlabeled digraphs not containing a Hamiltonian path are A326224.
The undirected case is A326205.
The unlabeled undirected case is A283420.
The case with loops is A326213.
Digraphs (without loops) containing a Hamiltonian path are A326217.
Digraphs (without loops) not containing a Hamiltonian cycle are A326218.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Select[Tuples[Range[n],2],UnsameQ@@#&]],FindHamiltonianPath[Graph[Range[n],DirectedEdge@@@#]]=={}&]],{n,4}] (* Mathematica 10.2+ *)

Formula

A053763(n) = a(n) + A326217(n).

A326207 Number of non-Hamiltonian labeled simple graphs with n vertices.

Original entry on oeis.org

1, 0, 2, 7, 54, 806, 22690, 1200396, 116759344, 20965139168, 6954959632776, 4363203307789888
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2019

Keywords

Comments

A graph is Hamiltonian if it contains a cycle passing through every vertex exactly once.

Examples

			The a(3) = 7 edge sets:
  {}
  {12}
  {13}
  {23}
  {12,13}
  {12,23}
  {13,23}
		

Crossrefs

The unlabeled version is A246446.
The directed version is A326220 (with loops) or A326216 (without loops).
Simple graphs with a Hamiltonian cycle are A326208.
Simple graphs without a Hamiltonian path are A326205.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],FindHamiltonianCycle[Graph[Range[n],#]]=={}&]],{n,0,4}] (* Mathematica 8.0+ *)

Formula

A006125(n) = a(n) + A326208(n).

Extensions

a(7)-a(11) from formula by Falk Hüffner, Jun 21 2019

A326215 Number of Hamiltonian unlabeled n-vertex graphs with loops.

Original entry on oeis.org

0, 2, 0, 4, 20
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2019

Keywords

Comments

A graph is Hamiltonian if it contains a cycle passing through every vertex exactly once.

Examples

			Non-isomorphic representatives of the a(3) = 4 edge-sets:
  {12,13,23}
  {12,13,23,33}
  {12,13,22,23,33}
  {11,12,13,22,23,33}
		

Crossrefs

The labeled case is A326240.
The directed case is A326226 (with loops) or A326225 (without loops).
The case without loops A003216.

A326239 Number of non-Hamiltonian labeled n-vertex graphs with loops.

Original entry on oeis.org

1, 0, 8, 56, 864, 25792
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2019

Keywords

Comments

A graph is Hamiltonian if it contains a cycle passing through every vertex exactly once.

Examples

			The a(3) = 56 edge-sets:
  {}  {11}  {11,12}  {11,12,13}
      {12}  {11,13}  {11,12,22}
      {13}  {11,22}  {11,12,23}
      {22}  {11,23}  {11,12,33}
      {23}  {11,33}  {11,13,22}
      {33}  {12,13}  {11,13,23}
            {12,22}  {11,13,33}
            {12,23}  {11,22,23}
            {12,33}  {11,22,33}
            {13,22}  {11,23,33}
            {13,23}  {12,13,22}
            {13,33}  {12,13,33}
            {22,23}  {12,22,23}
            {22,33}  {12,22,33}
            {23,33}  {12,23,33}
                     {13,22,23}
                     {13,22,33}
                     {13,23,33}
                     {22,23,33}
		

Crossrefs

The directed case is A326204 (with loops) or A326218 (without loops).
Simple graphs containing a Hamiltonian cycle are A326240.
Simple graphs not containing a Hamiltonian path are A326205.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Select[Tuples[Range[n],2],OrderedQ]],FindHamiltonianCycle[Graph[Range[n],#]]=={}&]],{n,0,4}]

A326240 Number of Hamiltonian labeled n-vertex graphs with loops.

Original entry on oeis.org

0, 2, 0, 8, 160, 6976, 644992
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2019

Keywords

Comments

A graph is Hamiltonian if it contains a cycle passing through every vertex exactly once.

Examples

			The a(3) = 8 edge-sets:
  {12,13,23}  {11,12,13,23}  {11,12,13,22,23}  {11,12,13,22,23,33}
              {12,13,22,23}  {11,12,13,23,33}
              {12,13,23,33}  {12,13,22,23,33}
		

Crossrefs

The unlabeled case is A326215.
The directed case is A326204 (with loops) or A326219 (without loops).
The case without loops A326208.
Graphs with loops not containing a Hamiltonian cycle are A326239.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Select[Tuples[Range[n],2],OrderedQ]],FindHamiltonianCycle[Graph[Range[n],#]]!={}&]],{n,0,5}]

Formula

a(n) = A326208(n) * 2^n.

A309524 Triangle read by rows: T(n,k) is the number of simple connected graphs on n nodes with longest path having k nodes, (1 <= k <= n).

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 5, 0, 0, 1, 2, 18, 0, 0, 1, 3, 17, 91, 0, 0, 1, 3, 29, 86, 734, 0, 0, 1, 4, 42, 176, 864, 10030, 0, 0, 1, 4, 64, 309, 2032, 10243, 248427
Offset: 1

Views

Author

Andrew Howroyd, Sep 06 2019

Keywords

Comments

Paths here are subgraphs that are isomorphic to a path graph and are measured by the number of vertices they contain rather than the number of edges. No vertex can appear more than once.
Paths with three vertices exist in all connected graphs with at least three vertices. For n > 3, the star graph is the only graph in which longer paths are not possible.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0, 2;
  0, 0, 1, 5;
  0, 0, 1, 2, 18;
  0, 0, 1, 3, 17,  91;
  0, 0, 1, 3, 29,  86,  734;
  0, 0, 1, 4, 42, 176,  864, 10030;
  0, 0, 1, 4, 64, 309, 2032, 10243, 248427;
  ...
		

Crossrefs

Row sums are A001349.
Right diagonal is A057864.
Cf. A325455 (circumference = longest cycle).
Cf. A307457.

A283421 Number of connected untraceable graphs on n vertices.

Original entry on oeis.org

0, 0, 0, 1, 3, 21, 119, 1087, 12653, 233999, 6469055
Offset: 1

Views

Author

Eric W. Weisstein, May 14 2017

Keywords

Crossrefs

Cf. A000088 (number of simple graphs on n vertices).
Cf. A001349 (number of simple connected graphs on n vertices).
Cf. A057864 (number of traceable simple graphs on n vertices).
Cf. A283420 (number of simple untraceable not necessarily connected graphs on n vertices).

Formula

a(n) = A001349(n) - A057864(n).
Previous Showing 11-20 of 20 results.