cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A059886 a(n) = |{m : multiplicative order of 4 mod m=n}|.

Original entry on oeis.org

2, 2, 4, 4, 6, 16, 6, 8, 26, 38, 14, 68, 6, 54, 84, 16, 6, 462, 6, 140, 132, 110, 14, 664, 120, 118, 128, 188, 62, 4456, 6, 96, 364, 118, 498, 7608, 30, 118, 180, 568, 30, 9000, 30, 892, 3974, 494, 62, 5360, 24, 8024, 1524, 892, 62, 9600, 3050, 1784, 372, 446
Offset: 1

Views

Author

Vladeta Jovovic, Feb 06 2001

Keywords

Comments

The multiplicative order of a mod m, GCD(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m).
a(n) is the number of orders of degree-n monic irreducible polynomials over GF(4).
Also, number of primitive factors of 4^n - 1. - Max Alekseyev, May 03 2022

Examples

			a(1) = |{1,3}| = 2, a(2) = |{5,15}| =2, a(3) = |{7,9,21,63}| =4, a(4) = |{17,51,85,255}| = 4.
		

Crossrefs

Number of primitive factors of b^n - 1: A059499 (b=2), A059885(b=3), this sequence (b=4), A059887 (b=5), A059888 (b=6), A059889 (b=7), A059890 (b=8), A059891 (b=9), A059892 (b=10).
Column k=4 of A212957.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*tau(4^d-1), d=divisors(n)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Oct 12 2012
  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#]*DivisorSigma[0, 4^# - 1]&]; Array[a, 100] (* Jean-François Alcover, Nov 11 2015 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d) * numdiv(4^d-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = Sum_{ d divides n } mu(n/d)*tau(4^d-1), (mu(n) = Moebius function A008683, tau(n) = number of divisors of n A000005).

A069061 Sum of divisors of 2^n+1.

Original entry on oeis.org

4, 6, 13, 18, 48, 84, 176, 258, 800, 1302, 2736, 4356, 10928, 20520, 51792, 65538, 174768, 351120, 699056, 1110276, 3100240, 5048232, 11184816, 17041416, 49012992, 82623888, 211053040, 284225796, 727960800, 1494039792, 2863311536, 4301668356, 12611914848, 20788904016
Offset: 1

Views

Author

Benoit Cloitre, Apr 04 2002

Keywords

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1, 2^Range[50] + 1] (* Paolo Xausa, Jul 05 2024 *)
  • PARI
    a(n) = sigma(2^n+1); \\ Michel Marcus, Nov 24 2013

Formula

a(n) = sigma(2^n+1).
a(n) = A000203(A000051(n)). - Michel Marcus, Nov 24 2013

Extensions

More terms from Amiram Eldar, Oct 04 2019

A085029 Number of prime factors of cyclotomic(n,4), which is A019322(n), the value of the n-th cyclotomic polynomial evaluated at x=4.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 3, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 1, 3, 2, 3, 2, 4, 3, 3, 1, 5, 2, 2, 2, 3, 3, 4, 2, 4, 3, 3, 1, 4, 2, 4, 2, 3, 4, 5, 2, 2, 4, 6, 2, 5, 2, 6, 2, 4, 2, 5, 1, 2, 4, 3, 2, 4, 2, 4, 3, 3, 2, 5, 2, 5, 4, 3, 3, 4, 5, 4, 2, 7, 4, 7, 2, 2, 4, 3, 3, 4, 3, 6, 1, 3, 3, 5, 1, 6, 3, 5, 4
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057957, number of prime factors of 4^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), this sequence (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 4]]][[2]], {n, 1, 100}]

A366602 Number of divisors of 4^n-1.

Original entry on oeis.org

2, 4, 6, 8, 8, 24, 8, 16, 32, 48, 16, 96, 8, 64, 96, 32, 8, 512, 8, 192, 144, 128, 16, 768, 128, 128, 160, 256, 64, 4608, 8, 128, 384, 128, 512, 8192, 32, 128, 192, 768, 32, 9216, 32, 1024, 4096, 512, 64, 6144, 32, 8192, 1536, 1024, 64, 10240, 3072, 2048, 384
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(4)=8 because 4^4-1 has divisors {1, 3, 5, 15, 17, 51, 85, 255}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](4^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0,4^Range[100]-1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    a(n) = numdiv(4^n-1);

Formula

a(n) = sigma0(4^n-1) = A000005(A024036(n)).
a(n) = A046801(2*n) = A046798(n) * A046801(n). - Max Alekseyev, Jan 07 2024

A366603 Sum of the divisors of 4^n-1.

Original entry on oeis.org

4, 24, 104, 432, 1536, 8736, 22528, 111456, 473600, 1999872, 5909760, 38054016, 89522176, 462274560, 2015330304, 7304603328, 22907191296, 166290432000, 366506672128, 2220409884672, 7645340651520, 29833839544320, 95821839806976, 648494317126656
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(4)=432 because 4^4-1 has divisors {1, 3, 5, 15, 17, 51, 85, 255}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](4^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[1,4^Range[30]-1] (* Paolo Xausa, Oct 14 2023 *)

Formula

a(n) = sigma(4^n-1) = A000203(A024036(n)).
a(n) = A069061(n) * A075708(n). - Robert Israel, Nov 22 2023

A366604 Number of distinct prime divisors of 4^n - 1.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 6, 3, 6, 6, 5, 3, 8, 3, 7, 6, 7, 4, 9, 7, 7, 6, 8, 6, 11, 3, 7, 8, 7, 9, 12, 5, 7, 7, 9, 5, 12, 5, 10, 11, 9, 6, 12, 5, 12, 10, 10, 6, 12, 11, 11, 8, 9, 6, 15, 3, 8, 11, 9, 9, 14, 5, 10, 8, 15, 6, 17, 6, 10, 13, 11, 10, 16, 5
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeNu[4^Range[100]-1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    for(n = 1, 100, print1(omega(4^n - 1), ", "))
    
  • Python
    from sympy import primenu
    def A366604(n): return primenu((1<<(n<<1))-1) # Chai Wah Wu, Oct 15 2023

Formula

a(n) = omega(4^n-1) = A001221(A024036(n)).
a(n) = A046800(2*n) = A046799(n) + A046800(n). - Max Alekseyev, Jan 07 2024

A366708 Number of prime factors of 12^n - 1 (counted with multiplicity).

Original entry on oeis.org

1, 2, 2, 4, 2, 5, 3, 6, 4, 4, 4, 8, 3, 6, 6, 9, 3, 9, 2, 8, 5, 6, 4, 12, 4, 8, 6, 10, 5, 13, 5, 11, 8, 6, 9, 14, 3, 6, 7, 14, 4, 14, 5, 12, 12, 8, 3, 18, 5, 10, 6, 13, 7, 16, 8, 13, 7, 8, 4, 19, 4, 8, 8, 13, 8, 17, 5, 10, 7, 14, 4, 21, 3, 7, 11, 11, 11, 18, 4
Offset: 1

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeOmega[12^Range[70]-1]
  • PARI
    a(n)=bigomega(12^n-1)

Formula

a(n) = bigomega(12^n-1) = A001222(A024140(n)).

A366682 Number of prime factors of 11^n - 1 (counted with multiplicity).

Original entry on oeis.org

2, 5, 4, 7, 4, 9, 4, 9, 5, 8, 4, 13, 4, 8, 7, 12, 3, 12, 3, 11, 10, 11, 5, 17, 8, 10, 6, 13, 4, 15, 5, 15, 9, 9, 8, 17, 6, 10, 12, 15, 9, 17, 4, 15, 9, 12, 5, 24, 7, 14, 9, 13, 6, 16, 10, 19, 8, 10, 5, 21, 5, 12, 16, 19, 8, 22, 6, 15, 10, 19, 7, 24, 3, 11, 15
Offset: 1

Views

Author

Sean A. Irvine, Oct 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeOmega[11^Range[70]-1]
  • PARI
    a(n)=bigomega(11^n-1)

Formula

a(n) = bigomega(11^n-1) = A001222(A024127(n)).
Previous Showing 11-18 of 18 results.