cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A318586 Number of integer partitions of n whose sum of reciprocals squared is the reciprocal of an integer.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 2, 3, 3, 1, 4, 1, 3, 1, 2, 1, 5, 2, 1, 4, 5, 1, 5, 1, 6, 3, 2, 4, 8, 2, 4, 2, 6, 3, 9, 2, 4, 7, 5, 4, 11, 8, 7, 8, 9, 5, 12, 5, 16, 5, 10, 5, 25, 10, 9, 13, 18, 12, 18, 6, 11, 14, 22, 9, 24, 11, 21, 22, 25, 24, 23, 28, 32
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Examples

			The a(42) = 9 integer partitions:
  (42)
  (21,14,7)
  (18,9,9,6)
  (18,9,9,3,3)
  (20,10,4,4,4)
  (12,12,12,4,2)
  (10,5,5,5,5,5,5,2)
  (12,6,6,4,4,4,2,2,2)
  (6,6,4,4,4,4,3,3,3,3,2)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[1/Total[#^(-2)]]&]],{n,30}]

Extensions

a(61)-a(80) from Giovanni Resta, Sep 03 2018

A325623 Heinz numbers of integer partitions whose reciprocal factorial sum is the reciprocal of an integer.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 221, 223, 227, 229
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   29: {10}
   31: {11}
   37: {12}
   41: {13}
   43: {14}
   47: {15}
   49: {4,4}
   53: {16}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],IntegerQ[1/Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]

A318573 Numerator of the reciprocal sum of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 1, 4, 1, 5, 1, 5, 5, 4, 1, 2, 1, 7, 3, 6, 1, 7, 2, 7, 3, 9, 1, 11, 1, 5, 7, 8, 7, 3, 1, 9, 2, 10, 1, 7, 1, 11, 4, 10, 1, 9, 1, 5, 9, 13, 1, 5, 8, 13, 5, 11, 1, 17, 1, 12, 5, 6, 1, 17, 1, 15, 11, 19, 1, 4, 1, 13, 7, 17, 9, 5, 1, 13, 2, 14, 1, 11, 10, 15, 3, 16, 1, 7, 5, 19, 13, 16, 11, 11, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Crossrefs

Programs

  • Mathematica
    Table[Sum[pr[[2]]/PrimePi[pr[[1]]],{pr,If[n==1,{},FactorInteger[n]]}],{n,100}]//Numerator
  • PARI
    A318573(n) = { my(f=factor(n)); numerator(sum(i=1,#f~,f[i, 2]/primepi(f[i, 1]))); }; \\ Antti Karttunen, Nov 17 2019

Formula

If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) is the numerator of Sum y_i/x_i.

Extensions

More terms from Antti Karttunen, Nov 17 2019

A318584 Number of integer partitions of n whose sum of reciprocals squared is 1.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 2, 2, 0, 0, 0, 2, 0, 2, 1, 2, 2, 2, 1, 1, 2, 3, 0, 1, 1, 6, 2, 3, 2, 6, 2, 2, 3, 2, 6, 7, 2, 4, 3, 9, 4, 7, 5, 8, 8, 7, 9, 9, 11, 12, 7, 9, 11, 17, 9, 13, 12, 17, 16, 13, 15, 20, 26, 27, 18, 23
Offset: 0

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

The a(16) = 1 integer partition:
(6,3,3,2,2,2)
The a(48) = 2 integer partitions:
(18,9,9,3,3,2,2,2)
(6,6,6,6,3,3,3,3,3,3,3,3)
The a(56) = 3 integer partitions:
(12,6,6,4,4,4,4,4,4,4,2,2)
(10,6,5,5,5,5,5,5,3,3,2,2)
(6,6,4,4,4,4,4,4,4,4,3,3,3,3)
The a(60) = 6 integer partitions:
(12,12,12,12,3,3,2,2,2)
(8,8,8,8,6,4,4,4,3,3,2,2)
(6,6,6,6,6,6,6,6,6,2,2,2)
(12,12,12,4,3,3,3,3,3,3,2)
(10,5,5,5,5,5,5,4,4,4,4,2,2)
(6,4,4,4,4,4,4,4,4,4,4,4,4,3,3)

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Total[#^(-2)]==1&]],{n,30}]

Extensions

a(61)-a(100) from Alois P. Heinz, Aug 30 2018

A318588 Heinz numbers of integer partitions whose sum of reciprocals squared is an integer.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 81, 128, 162, 256, 324, 512, 648, 1024, 1296, 2048, 2592, 4096, 5184, 6561, 8192, 8775, 10368, 13122, 16384, 17550, 20736, 26244, 32768, 35100, 41472, 52488, 64827, 65536, 70200, 82944, 104976, 129654, 131072, 140400, 165888, 209952
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Sequence of integer partitions whose Heinz numbers belong to the sequence begins: (), (1), (11), (111), (1111), (11111), (111111), (2222), (1111111), (22221), (11111111), (222211), (111111111), (2222111).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000],IntegerQ[Total[If[#==1,{},Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]^2]]]]&]

A318589 Heinz numbers of integer partitions whose sum of reciprocals squared is the reciprocal of an integer.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Crossrefs

Programs

  • Mathematica
    Select[Range[2,1000],IntegerQ[1/Total[If[#==1,{},Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]^2]]]]&]

A325621 Heinz numbers of integer partitions whose reciprocal factorial sum is an integer.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 81, 128, 144, 162, 256, 288, 324, 375, 512, 576, 648, 729, 750, 1024, 1152, 1296, 1458, 1500, 2048, 2304, 2592, 2916, 3000, 3375, 4096, 4608, 5184, 5832, 6000, 6561, 6750, 8192, 9216, 10368, 11664, 12000, 13122, 13500
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      4: {1,1}
      8: {1,1,1}
      9: {2,2}
     16: {1,1,1,1}
     18: {1,2,2}
     32: {1,1,1,1,1}
     36: {1,1,2,2}
     64: {1,1,1,1,1,1}
     72: {1,1,1,2,2}
     81: {2,2,2,2}
    128: {1,1,1,1,1,1,1}
    144: {1,1,1,1,2,2}
    162: {1,2,2,2,2}
    256: {1,1,1,1,1,1,1,1}
    288: {1,1,1,1,1,2,2}
    324: {1,1,2,2,2,2}
    375: {2,3,3,3}
    512: {1,1,1,1,1,1,1,1,1}
		

Crossrefs

Reciprocal factorial sum: A002966, A058360, A316856, A325619, A325620, A325623.

Programs

  • Mathematica
    Select[Range[1000],IntegerQ[Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]

A318574 Denominator of the reciprocal sum of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 1, 3, 5, 2, 6, 4, 6, 1, 7, 1, 8, 3, 4, 5, 9, 2, 3, 6, 2, 4, 10, 6, 11, 1, 10, 7, 12, 1, 12, 8, 3, 3, 13, 4, 14, 5, 3, 9, 15, 2, 2, 3, 14, 6, 16, 2, 15, 4, 8, 10, 17, 6, 18, 11, 4, 1, 2, 10, 19, 7, 18, 12, 20, 1, 21, 12, 6, 8, 20, 3, 22
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Crossrefs

Programs

  • Mathematica
    Table[Sum[pr[[2]]/PrimePi[pr[[1]]],{pr,If[n==1,{},FactorInteger[n]]}],{n,100}]//Denominator

Formula

If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) is the denominator of Sum y_i/x_i.

A067540 Number of partitions of n in which the sum of reciprocal of parts divides number of parts.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 5, 7, 4, 8, 5, 7, 5, 10, 5, 16, 8, 20, 9, 20, 10, 25, 13, 30, 21, 34, 32, 46, 35, 58, 48, 66, 59, 97, 65, 109, 94, 125, 112, 154, 133, 191, 154, 224, 195, 265, 236, 308, 289, 388, 353, 475, 424, 575, 528, 693, 661, 835
Offset: 1

Views

Author

Naohiro Nomoto, Jan 27 2002

Keywords

Crossrefs

Cf. A000041.

Formula

a(n)=#{n=p_1+p_2+...+p_r : r/sum_{i=1..r} 1/p_i is an integer} where n=p_1+p_2+...+p_r runs over all partitions of n. - Sean A. Irvine, Mar 24 2013
a(n) <= A058360(n) <= A000041(n). - Charles R Greathouse IV, Dec 15 2020

Extensions

More terms from Sean A. Irvine, Mar 24 2013

A316890 Heinz numbers of integer partitions into relatively prime parts whose reciprocal sum is 1.

Original entry on oeis.org

2, 195, 3185, 6475, 10527, 16401, 20445, 20535, 21045, 25365, 46155, 164255, 171941, 218855, 228085, 267883, 312785, 333925, 333935, 335405, 343735, 355355, 414295, 442975, 474513, 527425, 549575, 607475, 633777, 691041, 711321, 722425, 753865, 804837, 822783
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Includes 29888089, which is the first perfect power in the sequence and is absent from A316888.

Crossrefs

Programs

  • Mathematica
    Select[Range[2,100000],And[GCD@@PrimePi/@FactorInteger[#][[All,1]]==1,Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]==1]&]
Previous Showing 11-20 of 36 results. Next