cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 182 results. Next

A326359 Number of maximal antichains of nonempty subsets of {1..n}.

Original entry on oeis.org

1, 1, 2, 6, 28, 375, 31745, 123805913
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is an antichain if no element is a subset of any other.

Examples

			The a(0) = 1 through a(4) = 28 antichains:
  {}   {1}    {12}      {123}           {1234}
              {1}{2}    {1}{23}         {1}{234}
                        {2}{13}         {2}{134}
                        {3}{12}         {3}{124}
                        {1}{2}{3}       {4}{123}
                        {12}{13}{23}    {1}{2}{34}
                                        {1}{3}{24}
                                        {1}{4}{23}
                                        {2}{3}{14}
                                        {2}{4}{13}
                                        {3}{4}{12}
                                        {1}{2}{3}{4}
                                        {12}{134}{234}
                                        {13}{124}{234}
                                        {14}{123}{234}
                                        {23}{124}{134}
                                        {24}{123}{134}
                                        {34}{123}{124}
                                        {1}{23}{24}{34}
                                        {2}{13}{14}{34}
                                        {3}{12}{14}{24}
                                        {4}{12}{13}{23}
                                        {12}{13}{14}{234}
                                        {12}{23}{24}{134}
                                        {13}{23}{34}{124}
                                        {14}{24}{34}{123}
                                        {123}{124}{134}{234}
                                        {12}{13}{14}{23}{24}{34}
		

Crossrefs

Antichains of nonempty sets are A014466.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of sets are A326358.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[stableSets[Subsets[Range[n],{1,n}],SubsetQ]]],{n,0,5}]

Formula

For n > 0, a(n) = A326358(n) - 1.

Extensions

a(6) from Andrew Howroyd, Aug 14 2019
a(7) from Dmitry I. Ignatov, Oct 12 2021

A326361 Number of maximal intersecting antichains of sets covering n vertices with no singletons.

Original entry on oeis.org

1, 1, 1, 2, 12, 133, 11386, 12143511
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

Covering means there are no isolated vertices. A set system (set of sets) is an antichain if no part is a subset of any other, and is intersecting if no two parts are disjoint.

Examples

			The a(4) = 12 antichains:
  {{1,2,3,4}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,3},{1,2,4},{2,3,4}}
  {{1,4},{1,2,3},{2,3,4}}
  {{2,3},{1,2,4},{1,3,4}}
  {{2,4},{1,2,3},{1,3,4}}
  {{3,4},{1,2,3},{1,2,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,2},{2,3},{2,4},{1,3,4}}
  {{1,3},{2,3},{3,4},{1,2,4}}
  {{1,4},{2,4},{3,4},{1,2,3}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Antichains of nonempty, non-singleton sets are A307249.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of nonempty sets are A326359.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[stableSets[Subsets[Range[n]],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&],Union@@#==Range[n]&]]],{n,0,5}]
    (* 2nd program *)
    n = 2^6; g = CompleteGraph[n]; i = 0;
    While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]];
    sets = Select[FindClique[g, Infinity, All], BitOr @@ # == n - 1 &];
    Length[sets] (* Elijah Beregovsky, May 05 2020 *)

Extensions

a(6)-a(7) from Elijah Beregovsky, May 05 2020

A331591 a(n) is the number of distinct prime factors of A225546(n), or equally, number of distinct prime factors of A293442(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jan 21 2020

Keywords

Comments

a(n) is the number of terms in the unique factorization of n into powers of squarefree numbers with distinct exponents that are powers of 2. See A329332 for a description of the relationship between this factorization, canonical (prime power) factorization and A225546.
The result depends only on the prime signature of n.
a(n) is the number of distinct bit-positions where there is a 1-bit in the binary representation of an exponent in the prime factorization of n. - Antti Karttunen, Feb 05 2020
The first 3 is a(128) = a(2^1 * 2^2 * 2^4) = 3 and in general each m occurs first at position 2^(2^m-1) = A058891(m+1). - Peter Munn, Mar 07 2022

Examples

			From _Peter Munn_, Jan 28 2020: (Start)
The factorization of 6 into powers of squarefree numbers with distinct exponents that are powers of 2 is 6 = 6^(2^0) = 6^1, which has 1 term. So a(6) = 1.
Similarly, 40 = 10^(2^0) * 2^(2^1) = 10^1 * 2^2 = 10 * 4, which has 2 terms. So a(40) = 2.
Similarly, 320 = 5^(2^0) * 2^(2^1) * 2^(2^2) = 5^1 * 2^2 * 2^4 = 5 * 4 * 16, which has 3 terms. So a(320) = 3.
10^100 (a googol) factorizes in this way as 10^4 * 10^32 * 10^64. So a(10^100) = 3.
(End)
		

Crossrefs

Sequences with related definitions: A001221, A331309, A331592, A331593, A331740.
Positions of records: A058891.
Positions of 1's: A340682.
Sequences used to express relationships between the terms: A007913, A008833, A059796, A331590.

Programs

  • Mathematica
    Array[PrimeNu@ If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 105] (* Michael De Vlieger, Jan 24 2020 *)
    f[e_] := Position[Reverse[IntegerDigits[e, 2]], 1] // Flatten; a[n_] := CountDistinct[Flatten[f /@ FactorInteger[n][[;; , 2]]]]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Dec 23 2023 *)
  • PARI
    A331591(n) = if(1==n,0,my(f=factor(n),u=#binary(vecmax(f[, 2])),xs=vector(u),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),xs[i]++)); m<<=1); #select(x -> (x>0),xs));
    
  • PARI
    A331591(n) = if(1==n, 0, hammingweight(fold(bitor, factor(n)[, 2]))); \\ Antti Karttunen, Feb 05 2020
    
  • PARI
    A331591(n) = if(n==1, 0, (core(n)>1) + A331591(core(n,1)[2])) \\ Peter Munn, Mar 08 2022

Formula

a(n) = A001221(A293442(n)) = A001221(A225546(n)).
From Peter Munn, Jan 28 2020: (Start)
a(n) = A000120(A267116(n)).
a(n) = a(A007913(n)) + a(A008833(n)).
For m >= 2, a(A005117(m)) = 1.
a(n^2) = a(n).
(End)
a(n) <= A331740(n) <= A048675(n) <= A293447(n). - Antti Karttunen, Feb 05 2020
From Peter Munn, Mar 07 2022: (Start)
a(n) <= A299090(n).
a(A337533(n)) = A299090(A337533(n)).
a(A337534(n)) < A299090(A337534(n)).
max(a(n), a(k)) <= a(A059796(n, k)) = a(A331590(n, k)) <= a(n) + a(k).
(End)

A367909 Numbers n such that there is more than one way to choose a different binary index of each binary index of n.

Original entry on oeis.org

4, 12, 16, 18, 20, 32, 33, 36, 48, 52, 64, 65, 66, 68, 72, 76, 80, 82, 84, 96, 97, 100, 112, 132, 140, 144, 146, 148, 160, 161, 164, 176, 180, 192, 193, 194, 196, 200, 204, 208, 210, 212, 224, 225, 228, 240, 256, 258, 260, 264, 266, 268, 272, 274, 276, 288
Offset: 1

Views

Author

Gus Wiseman, Dec 11 2023

Keywords

Comments

Also BII-numbers of set-systems (sets of nonempty sets) satisfying a strict version of the axiom of choice in more than one way.
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. A set-system is a finite set of finite nonempty sets. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary digits (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The set-system {{1},{1,2},{1,3}} with BII-number 21 satisfies the axiom in only one way (1,2,3), so 21 is not in the sequence.
The terms together with the corresponding set-systems begin:
   4: {{1,2}}
  12: {{1,2},{3}}
  16: {{1,3}}
  18: {{2},{1,3}}
  20: {{1,2},{1,3}}
  32: {{2,3}}
  33: {{1},{2,3}}
  36: {{1,2},{2,3}}
  48: {{1,3},{2,3}}
  52: {{1,2},{1,3},{2,3}}
  64: {{1,2,3}}
  65: {{1},{1,2,3}}
  66: {{2},{1,2,3}}
  68: {{1,2},{1,2,3}}
  72: {{3},{1,2,3}}
		

Crossrefs

These set-systems are counted by A367772.
Positions of terms > 1 in A367905, firsts A367910, sorted firsts A367911.
If there is at least one choice we get A367906, counted by A367902.
If there are no choices we get A367907, counted by A367903.
If there is one unique choice we get A367908, counted by A367904.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
A368098 counts unlabeled multiset partitions per axiom, complement A368097.
BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100], Length[Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]]>1&]

Formula

A367911 Sorted positions of first appearances in A367905.

Original entry on oeis.org

1, 4, 7, 20, 68, 320, 352, 1088, 3136, 5184, 13376, 16704, 17472, 70720, 82240, 83008, 90112, 90176
Offset: 1

Views

Author

Gus Wiseman, Dec 16 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.

Examples

			The terms together with the corresponding set-systems begin:
      1: {{1}}
      4: {{1,2}}
      7: {{1},{2},{1,2}}
     20: {{1,2},{1,3}}
     68: {{1,2},{1,2,3}}
    320: {{1,2,3},{1,4}}
    352: {{2,3},{1,2,3},{1,4}}
   1088: {{1,2,3},{1,2,4}}
   3136: {{1,2,3},{1,2,4},{3,4}}
   5184: {{1,2,3},{1,2,4},{1,3,4}}
  13376: {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  16704: {{1,2,3},{1,4},{1,2,3,4}}
  17472: {{1,2,3},{1,2,4},{1,2,3,4}}
  70720: {{1,2,3},{1,2,4},{1,3,4},{1,5}}
  82240: {{1,2,3},{1,4},{1,2,3,4},{1,5}}
		

Crossrefs

Sorted positions of first appearances in A367905.
The unsorted version is A367910.
Multisets without distinctness are A367915, unsorted A367913.
Without distinctness we have A368112, unsorted A368111.
For sets instead of sequences we have A368185, unsorted A368184.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    c=Table[Length[Select[Tuples[bpe/@bpe[n]],UnsameQ@@#&]],{n,1000}];
    Select[Range[Length[c]],FreeQ[Take[c,#-1],c[[#]]]&]

A326362 Number of maximal intersecting antichains of nonempty, non-singleton subsets of {1..n}.

Original entry on oeis.org

1, 1, 1, 2, 16, 163, 11742, 12160640
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is an antichain if no part is a subset of any other, and is intersecting if no two parts are disjoint.

Examples

			The a(4) = 16 maximal intersecting antichains:
  {{1,2,3,4}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,4},{2,4}}
  {{1,3},{1,4},{3,4}}
  {{2,3},{2,4},{3,4}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,3},{1,2,4},{2,3,4}}
  {{1,4},{1,2,3},{2,3,4}}
  {{2,3},{1,2,4},{1,3,4}}
  {{2,4},{1,2,3},{1,3,4}}
  {{3,4},{1,2,3},{1,2,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,2},{2,3},{2,4},{1,3,4}}
  {{1,3},{2,3},{3,4},{1,2,4}}
  {{1,4},{2,4},{3,4},{1,2,3}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Antichains of nonempty, non-singleton sets are A307249.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of nonempty sets are A326359.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[stableSets[Subsets[Range[n],{2,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&]]],{n,0,5}]
    (* 2nd program *)
    n = 2^6; g = CompleteGraph[n]; i = 0;
    While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]];
    sets = FindClique[g, Infinity, All];
    Length[sets]-Log[2,n]-1 (* Elijah Beregovsky, May 06 2020 *)

Formula

For n > 1, a(n) = A326363(n) - n - 1 = A007363(n + 1) - n.

Extensions

a(7) from Elijah Beregovsky, May 06 2020

A326968 Number of set-systems on n vertices whose dual is a weak antichain.

Original entry on oeis.org

1, 2, 6, 56, 19446
Offset: 0

Views

Author

Gus Wiseman, Aug 10 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. A weak antichain is a multiset of sets, none of which is a proper subset of any other.

Examples

			The a(0) = 1 through a(2) = 6 set-systems:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1,2}}
             {{1},{2}}
             {{1},{2},{1,2}}
		

Crossrefs

The case with strict dual is A326965.
The BII-numbers of these set-systems are A326966.
The version with empty edges allowed is A326969.
The covering case is A326970.
The unlabeled version is A326971.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],stableQ[dual[#],SubsetQ]&]],{n,0,3}]

Formula

a(n) = A326969(n)/2.
Binomial transform of A326970.

A367772 Number of sets of nonempty subsets of {1..n} satisfying a strict version of the axiom of choice in more than one way.

Original entry on oeis.org

0, 0, 1, 23, 1105, 154941, 66072394, 88945612865, 396990456067403
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Non-isomorphic representatives of the a(3) = 23 set-systems:
  {{1,2}}
  {{1,2,3}}
  {{1},{2,3}}
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1,2},{1,2,3}}
  {{1},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,2,3}}
		

Crossrefs

For at least one choice we have A367902.
For no choices we have A367903, no singletons A367769, ranks A367907.
For a unique choice we have A367904, ranks A367908.
These set-systems have ranks A367909.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]], Length[Select[Tuples[#], UnsameQ@@#&]]>1&]], {n,0,3}]

Formula

A367903(n) + A367904(n) + a(n) = A058891(n).

Extensions

a(5)-a(8) from Christian Sievers, Jul 26 2024

A367910 Least number k such that there are exactly n ways to choose a different binary index of each binary index of k.

Original entry on oeis.org

7, 1, 4, 20, 68, 320, 352, 1088, 3136, 13376, 16704, 5184, 82240, 70720, 17472
Offset: 0

Views

Author

Gus Wiseman, Dec 16 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.

Examples

			The terms together with the corresponding set-systems begin:
      7: {{1},{2},{1,2}}
      1: {{1}}
      4: {{1,2}}
     20: {{1,2},{1,3}}
     68: {{1,2},{1,2,3}}
    320: {{1,2,3},{1,4}}
    352: {{2,3},{1,2,3},{1,4}}
   1088: {{1,2,3},{1,2,4}}
   3136: {{1,2,3},{1,2,4},{3,4}}
  13376: {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  16704: {{1,2,3},{1,4},{1,2,3,4}}
   5184: {{1,2,3},{1,2,4},{1,3,4}}
  82240: {{1,2,3},{1,4},{1,2,3,4},{1,5}}
  70720: {{1,2,3},{1,2,4},{1,3,4},{1,5}}
		

Crossrefs

Positions of first appearances in A367905.
The sorted version is A367911.
For multisets w/o distinctness: A367913, firsts of A367912, sorted A367915.
Not requiring distinctness gives A368111, firsts of A368109, sorted A368112.
For multisets of indices we have A368184, firsts of A368183, sorted A368185.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    c=Table[Length[Select[Tuples[bpe/@bpe[n]],UnsameQ@@#&]],{n,1000}];
    spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&];
    Table[Position[c,n][[1,1]],{n,0,spnm[c]}]

A368101 Numbers of which there is exactly one way to choose a different prime factor of each prime index.

Original entry on oeis.org

1, 3, 5, 11, 15, 17, 31, 33, 39, 41, 51, 55, 59, 65, 67, 83, 85, 87, 93, 109, 111, 123, 127, 129, 155, 157, 165, 177, 179, 187, 191, 201, 205, 211, 213, 235, 237, 241, 249, 255, 267, 277, 283, 295, 303, 305, 319, 321, 327, 331, 335, 341, 353, 365, 367, 381
Offset: 1

Views

Author

Gus Wiseman, Dec 12 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 2795 are {3,6,14}, with prime factors {{3},{2,3},{2,7}}, and the only choice with different terms is {3,2,7}, so 2795 is in the sequence.
The terms together with their prime indices of prime indices begin:
    1: {}
    3: {{1}}
    5: {{2}}
   11: {{3}}
   15: {{1},{2}}
   17: {{4}}
   31: {{5}}
   33: {{1},{3}}
   39: {{1},{1,2}}
   41: {{6}}
   51: {{1},{4}}
   55: {{2},{3}}
   59: {{7}}
   65: {{2},{1,2}}
   67: {{8}}
   83: {{9}}
   85: {{2},{4}}
   87: {{1},{1,3}}
   93: {{1},{5}}
  109: {{10}}
  111: {{1},{1,1,2}}
		

Crossrefs

For no choices we have A355529, odd A355535, binary A367907.
Positions of ones in A367771.
The version for binary indices is A367908, positions of ones in A367905.
For any number of choices we have A368100.
For a unique set instead of sequence we have A370647, counted by A370594.
A058891 counts set-systems, covering A003465, connected A323818.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sort A118914, length A001221, sum A001222.
A355741 chooses a prime factor of each prime index, multisets A355744.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100], Length[Select[Tuples[prix/@prix[#]], UnsameQ@@#&]]==1&]
Previous Showing 71-80 of 182 results. Next