cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A001206 Number of self-dual monotone Boolean functions of n variables.

Original entry on oeis.org

0, 1, 2, 4, 12, 81, 2646, 1422564, 229809982112, 423295099074735261880
Offset: 0

Views

Author

Keywords

Comments

Sometimes called Hosten-Morris numbers (or HM numbers).
Also the number of simplicial complexes on the set {1, ..., n-1} such that no pair of faces covers all of {1, ..., n-1}. [Miller-Sturmfels] - N. J. A. Sloane, Feb 18 2008
Also the maximal number of generators of a neighborly monomial ideal in n variables. [Miller-Sturmfels]. - N. J. A. Sloane, Feb 18 2008
Also the number of intersecting antichains on a labeled (n-1)-set or (n-1)-variable Boolean functions in the Post class F(7,2). Cf. A059090. - Vladeta Jovovic, Goran Kilibarda, Dec 28 2000
Also the number of nondominated coteries on n members. - Don Knuth, Sep 01 2005
The number of maximal families of intersecting subsets of an n-element set. - Bridget Tenner, Nov 16 2006
Rivière gives a(n) for n <= 5. - N. J. A. Sloane, May 12 2012

Examples

			a(2) = 1 + 1 = 2;
a(3) = 1 + 3 = 4;
a(4) = 1 + 7 + 3 + 1 = 12;
a(5) = 1 + 15 + 30 + 30 + 5 = 81;
a(6) = 1 + 31 + 195 + 605 + 780 + 543 + 300 + 135 + 45 + 10 + 1 = 2646;
a(7) = 1 + 63 + 1050 + 9030 + 41545 + 118629 + 233821 + 329205 + 327915 + 224280 + 100716 + 29337 + 5950 + 910 + 105 + 1 = 1422564.
Cf. A059090.
From _Gus Wiseman_, Jul 03 2019: (Start)
The a(1) = 1 through a(4) = 12 intersecting antichains of nonempty sets (see Jovovic and Kilibarda's comment):
  {}  {}     {}       {}
      {{1}}  {{1}}    {{1}}
             {{2}}    {{2}}
             {{1,2}}  {{3}}
                      {{1,2}}
                      {{1,3}}
                      {{2,3}}
                      {{1,2,3}}
                      {{1,2},{1,3}}
                      {{1,2},{2,3}}
                      {{1,3},{2,3}}
                      {{1,2},{1,3},{2,3}}
(End)
		

References

  • Martin Aigner and Günter M. Ziegler, Proofs from THE BOOK, Third Edition, Springer-Verlag, 2004. See chapter 22.
  • V. Jovovic and G. Kilibarda, The number of n-variable Boolean functions in the Post class F(7,2), Belgrade, 2001, in preparation.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
  • W. F. Lunnon, The IU function: the size of a free distributive lattice, pp. 173-181 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.
  • Charles F. Mills and W. M. Mills, The calculation of λ(8), preprint, 1979. Gives a(8).
  • E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Springer, 2005.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The case with empty edges allowed is A326372.
The maximal case is A007363, or A326363 with empty edges allowed.
The case with empty intersection is A326366.
The inverse binomial transform is the covering case A305844.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{1,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&]],{n,0,5}] (* Gus Wiseman, Jul 03 2019 *)

Formula

a(n+1) = Sum_{m=0..A037952(n)} A059090(n, m).
For n > 0, a(n) = A326372(n - 1) - 1. - Gus Wiseman, Jul 03 2019

Extensions

a(8) due to C. F. Mills & W. H. Mills, 1979
a(8) from Daniel E. Loeb, Jan 04 1996
a(8) confirmed by Don Knuth, Feb 08 2008
a(9) from Andries E. Brouwer, Aug 25 2012

A326358 Number of maximal antichains of subsets of {1..n}.

Original entry on oeis.org

1, 2, 3, 7, 29, 376, 31746, 123805914
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is an antichain if no element is a subset of any other.

Examples

			The a(0) = 1 through a(3) = 7 maximal antichains:
  {}  {}   {}      {}
      {1}  {12}    {123}
           {1}{2}  {1}{23}
                   {2}{13}
                   {3}{12}
                   {1}{2}{3}
                   {12}{13}{23}
		

Crossrefs

Antichains of sets are A000372.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of nonempty sets are A326359.

Programs

  • GAP
    LoadPackage("grape");
          maxachP:=function(n) local g,G;
           g:=Graph(Group(()), Combinations([1..n]), function(x, g) return x; end,
              function(x, y) return not IsSubset(x, y) and not IsSubset(y, x); end, true);
           G:=AutGroupGraph(g);
           return Sum(CompleteSubgraphs(NewGroupGraph(G, g), -1, 2),
                  function(c) return Length(Orbit(G, c, OnSets)); end);
         end;
           List([0..7],maxachP); # Mamuka Jibladze, Jan 26 2021
  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[stableSets[Subsets[Range[n]],SubsetQ]]],{n,0,5}]
    (* alternatively *)
    maxachP[n_]:=FindIndependentVertexSet[
      Flatten[Map[Function[s, Map[# \[DirectedEdge] s &, Most[Subsets[s]]]],
        Subsets[Range[n]]]], Infinity, All];
    Table[Length[maxachP[n]],{n,0,6}] (* Mamuka Jibladze, Jan 25 2021 *)

Formula

For n > 0, a(n) = A326359(n) + 1.

Extensions

a(6)-a(7) from Mamuka Jibladze, Jan 26 2021

A007363 Maximal self-dual antichains on n points.

Original entry on oeis.org

0, 1, 3, 5, 20, 168, 11748, 12160647
Offset: 1

Views

Author

Keywords

Comments

From Gus Wiseman, Jul 02 2019: (Start)
If self-dual means (pairwise) intersecting, then a(n) is the number of maximal intersecting antichains of nonempty subsets of {1..(n - 1)}. A set of sets is an antichain if no part is a subset of any other, and is intersecting if no two parts are disjoint. For example, the a(2) = 1 through a(5) = 20 maximal intersecting antichains are:
{1} {1} {1} {1}
{2} {2} {2}
{12} {3} {3}
{123} {4}
{12}{13}{23} {1234}
{12}{13}{23}
{12}{14}{24}
{13}{14}{34}
{23}{24}{34}
{12}{134}{234}
{13}{124}{234}
{14}{123}{234}
{23}{124}{134}
{24}{123}{134}
{34}{123}{124}
{12}{13}{14}{234}
{12}{23}{24}{134}
{13}{23}{34}{124}
{14}{24}{34}{123}
{123}{124}{134}{234}
(End)

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Intersecting antichains are A326372.
Intersecting antichains of nonempty sets are A001206.
Unlabeled intersecting antichains are A305857.
Maximal antichains of nonempty sets are A326359.
The case with empty edges allowed is A326363.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[stableSets[Subsets[Range[n],{1,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&]]],{n,0,5}] (* Gus Wiseman, Jul 02 2019 *)
    (* 2nd program *)
    n = 2^6; g = CompleteGraph[n]; i = 0;
    While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]];
    sets = FindClique[g, Infinity, All];
    Length[sets]-1 (* Elijah Beregovsky, May 06 2020 *)

Formula

For n > 0, a(n) = A326363(n - 1) - 1 = A326362(n - 1) + n - 1. - Gus Wiseman, Jul 03 2019

Extensions

a(8) from Elijah Beregovsky, May 06 2020

A326363 Number of maximal intersecting antichains of subsets of {1..n}.

Original entry on oeis.org

1, 2, 4, 6, 21, 169, 11749, 12160648
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is an antichain if no element is a subset of any other, and is intersecting if no two element are disjoint.

Examples

			The a(1) = 1 through a(4) = 21 maximal intersecting antichains:
  {}   {}    {}            {}
  {1}  {1}   {1}           {1}
       {2}   {2}           {2}
       {12}  {3}           {3}
             {123}         {4}
             {12}{13}{23}  {1234}
                           {12}{13}{23}
                           {12}{14}{24}
                           {13}{14}{34}
                           {23}{24}{34}
                           {12}{134}{234}
                           {13}{124}{234}
                           {14}{123}{234}
                           {23}{124}{134}
                           {24}{123}{134}
                           {34}{123}{124}
                           {12}{13}{14}{234}
                           {12}{23}{24}{134}
                           {13}{23}{34}{124}
                           {14}{24}{34}{123}
                           {123}{124}{134}{234}
		

Crossrefs

The case with nonempty, non-singleton edges is A326362.
Antichains of nonempty, non-singleton sets are A307249.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of nonempty sets are A326359.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[stableSets[Subsets[Range[n],{0,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&]]],{n,0,5}]
    (* 2nd program *)
    n = 2^6; g = CompleteGraph[n]; i = 0;
    While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]];
    sets = FindClique[g, Infinity, All];
    Length[sets] (* Elijah Beregovsky, May 06 2020 *)

Formula

For n > 1, a(n) = A007363(n + 1) + 1 = A326362(n) + n + 1.

Extensions

a(7) from Elijah Beregovsky, May 06 2020

A326362 Number of maximal intersecting antichains of nonempty, non-singleton subsets of {1..n}.

Original entry on oeis.org

1, 1, 1, 2, 16, 163, 11742, 12160640
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is an antichain if no part is a subset of any other, and is intersecting if no two parts are disjoint.

Examples

			The a(4) = 16 maximal intersecting antichains:
  {{1,2,3,4}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,4},{2,4}}
  {{1,3},{1,4},{3,4}}
  {{2,3},{2,4},{3,4}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,3},{1,2,4},{2,3,4}}
  {{1,4},{1,2,3},{2,3,4}}
  {{2,3},{1,2,4},{1,3,4}}
  {{2,4},{1,2,3},{1,3,4}}
  {{3,4},{1,2,3},{1,2,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,2},{2,3},{2,4},{1,3,4}}
  {{1,3},{2,3},{3,4},{1,2,4}}
  {{1,4},{2,4},{3,4},{1,2,3}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Antichains of nonempty, non-singleton sets are A307249.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of nonempty sets are A326359.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[stableSets[Subsets[Range[n],{2,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&]]],{n,0,5}]
    (* 2nd program *)
    n = 2^6; g = CompleteGraph[n]; i = 0;
    While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]];
    sets = FindClique[g, Infinity, All];
    Length[sets]-Log[2,n]-1 (* Elijah Beregovsky, May 06 2020 *)

Formula

For n > 1, a(n) = A326363(n) - n - 1 = A007363(n + 1) - n.

Extensions

a(7) from Elijah Beregovsky, May 06 2020

A326360 Number of maximal antichains of nonempty, non-singleton subsets of {1..n}.

Original entry on oeis.org

1, 1, 1, 2, 13, 279, 29820, 123590767
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is an antichain if no element is a subset of any other.

Examples

			The a(1) = 1 through a(4) = 13 maximal antichains:
  {}  {12}  {123}         {1234}
            {12}{13}{23}  {12}{134}{234}
                          {13}{124}{234}
                          {14}{123}{234}
                          {23}{124}{134}
                          {24}{123}{134}
                          {34}{123}{124}
                          {12}{13}{14}{234}
                          {12}{23}{24}{134}
                          {13}{23}{34}{124}
                          {14}{24}{34}{123}
                          {123}{124}{134}{234}
                          {12}{13}{14}{23}{24}{34}
		

Crossrefs

Antichains of nonempty, non-singleton sets are A307249.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of nonempty sets are A326359.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[stableSets[Subsets[Range[n],{2,n}],SubsetQ]]],{n,0,4}]
  • Python
    # see Ignatov links
    # Dmitry I. Ignatov, Oct 14 2021

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A326359(k) for n >= 2. - Andrew Howroyd, Nov 19 2021

Extensions

a(6) from Andrew Howroyd, Aug 14 2019
a(7) from Dmitry I. Ignatov, Oct 14 2021

A326365 Number of intersecting antichains with empty intersection (meaning there is no vertex in common to all the edges) covering n vertices.

Original entry on oeis.org

1, 0, 0, 1, 23, 1834, 1367903, 229745722873, 423295077919493525420
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

Covering means there are no isolated vertices. A set system (set of sets) is an antichain if no part is a subset of any other, and is intersecting if no two parts are disjoint.

Examples

			The a(4) = 23 intersecting antichains with empty intersection:
  {{1,2},{1,3},{2,3,4}}
  {{1,2},{1,4},{2,3,4}}
  {{1,2},{2,3},{1,3,4}}
  {{1,2},{2,4},{1,3,4}}
  {{1,3},{1,4},{2,3,4}}
  {{1,3},{2,3},{1,2,4}}
  {{1,3},{3,4},{1,2,4}}
  {{1,4},{2,4},{1,2,3}}
  {{1,4},{3,4},{1,2,3}}
  {{2,3},{2,4},{1,3,4}}
  {{2,3},{3,4},{1,2,4}}
  {{2,4},{3,4},{1,2,3}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,3},{1,2,4},{2,3,4}}
  {{1,4},{1,2,3},{2,3,4}}
  {{2,3},{1,2,4},{1,3,4}}
  {{2,4},{1,2,3},{1,3,4}}
  {{3,4},{1,2,3},{1,2,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,2},{2,3},{2,4},{1,3,4}}
  {{1,3},{2,3},{3,4},{1,2,4}}
  {{1,4},{2,4},{3,4},{1,2,3}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Intersecting antichain covers are A305844.
Intersecting covers with empty intersection are A326364.
Antichain covers with empty intersection are A305001.
The binomial transform is the non-covering case A326366.
Covering, intersecting antichains with empty intersection are A326365.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&],And[Union@@#==Range[n],#=={}||Intersection@@#=={}]&]],{n,0,4}]

Extensions

a(7)-a(8) from Andrew Howroyd, Aug 14 2019

A326366 Number of intersecting antichains of nonempty subsets of {1..n} with empty intersection (meaning there is no vertex in common to all the edges).

Original entry on oeis.org

1, 1, 1, 2, 28, 1960, 1379273, 229755337549, 423295079757497714059
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is an antichain if no edge is a subset of any other, and is intersecting if no two edges are disjoint.

Examples

			The a(0) = 1 through a(4) = 28 intersecting antichains with empty intersection:
  {}  {}  {}  {}              {}
              {{12}{13}{23}}  {{12}{13}{23}}
                              {{12}{14}{24}}
                              {{13}{14}{34}}
                              {{23}{24}{34}}
                              {{12}{13}{234}}
                              {{12}{14}{234}}
                              {{12}{23}{134}}
                              {{12}{24}{134}}
                              {{13}{14}{234}}
                              {{13}{23}{124}}
                              {{13}{34}{124}}
                              {{14}{24}{123}}
                              {{14}{34}{123}}
                              {{23}{24}{134}}
                              {{23}{34}{124}}
                              {{24}{34}{123}}
                              {{12}{134}{234}}
                              {{13}{124}{234}}
                              {{14}{123}{234}}
                              {{23}{124}{134}}
                              {{24}{123}{134}}
                              {{34}{123}{124}}
                              {{12}{13}{14}{234}}
                              {{12}{23}{24}{134}}
                              {{13}{23}{34}{124}}
                              {{14}{24}{34}{123}}
                              {{123}{124}{134}{234}}
		

Crossrefs

The case with empty edges allowed is A326375.
Intersecting antichains of nonempty sets are A001206.
Intersecting set systems with empty intersection are A326373.
Antichains of nonempty sets with empty intersection are A006126 or A307249.
The inverse binomial transform is the covering case A326365.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&],#=={}||Intersection@@#=={}&]],{n,0,4}]

Formula

a(n) = A326375(n) - 1.
a(n) = A001206(n+1) + A307249(n) - A014466(n). - Andrew Howroyd, Aug 14 2019

Extensions

a(7)-a(8) from Andrew Howroyd, Aug 14 2019

A326364 Number of intersecting set systems with empty intersection (meaning there is no vertex in common to all the edges) covering n vertices.

Original entry on oeis.org

1, 0, 0, 2, 426, 987404, 887044205940, 291072121051815578010398, 14704019422368226413234332571239460300433492086, 12553242487939461785560846872353486129110194397301168776798213375239447299205732561174066488
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

Covering means there are no isolated vertices. A set system (set of sets) is intersecting if no two edges are disjoint.

Examples

			The a(3) = 2 intersecting set systems with empty intersection:
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Covering set systems with empty intersection are A318128.
Covering, intersecting set systems are A305843.
Covering, intersecting antichains with empty intersection are A326365.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],And[Union@@#==Range[n],#=={}||Intersection@@#=={}]&]],{n,0,4}]

Formula

Inverse binomial transform of A326373. - Andrew Howroyd, Aug 12 2019

Extensions

a(6)-a(9) from Andrew Howroyd, Aug 12 2019

A329561 BII-numbers of intersecting antichains of sets.

Original entry on oeis.org

0, 1, 2, 4, 8, 16, 20, 32, 36, 48, 52, 64, 128, 256, 260, 272, 276, 320, 512, 516, 544, 548, 576, 768, 772, 832, 1024, 1040, 1056, 1072, 1088, 2048, 2064, 2080, 2096, 2112, 2304, 2320, 2368, 2560, 2592, 2624, 2816, 2880, 3072, 3088, 3104, 3120, 3136, 4096
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
A set-system is intersecting if no two edges are disjoint. It is an antichain if no edge is a proper subset of any other.

Examples

			The sequence of terms together with their corresponding set-systems begins:
    0: {}
    1: {{1}}
    2: {{2}}
    4: {{1,2}}
    8: {{3}}
   16: {{1,3}}
   20: {{1,2},{1,3}}
   32: {{2,3}}
   36: {{1,2},{2,3}}
   48: {{1,3},{2,3}}
   52: {{1,2},{1,3},{2,3}}
   64: {{1,2,3}}
  128: {{4}}
  256: {{1,4}}
  260: {{1,2},{1,4}}
  272: {{1,3},{1,4}}
  276: {{1,2},{1,3},{1,4}}
  320: {{1,2,3},{1,4}}
  512: {{2,4}}
  516: {{1,2},{2,4}}
		

Crossrefs

Intersection of A326704 (antichains) and A326910 (intersecting).
Covering intersecting antichains of sets are counted by A305844.
BII-numbers of antichains with empty intersection are A329560.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[0,1000],stableQ[bpe/@bpe[#],SubsetQ[#1,#2]||Intersection[#1,#2]=={}&]&]
Showing 1-10 of 13 results. Next