cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A287151 Array read by antidiagonals: T(m,n) = number of nonzero m X n binary arrays with all 1's connected.

Original entry on oeis.org

1, 3, 3, 6, 13, 6, 10, 40, 40, 10, 15, 108, 218, 108, 15, 21, 275, 1126, 1126, 275, 21, 28, 681, 5726, 11506, 5726, 681, 28, 36, 1664, 28992, 116166, 116166, 28992, 1664, 36, 45, 4040, 146642, 1168586, 2301877, 1168586, 146642, 4040, 45, 55, 9779, 741556, 11749134, 45280509, 45280509, 11749134, 741556, 9779, 55
Offset: 1

Views

Author

Andrew Howroyd, May 20 2017

Keywords

Comments

Also the number of connected induced (non-null) subgraphs of the grid graph P_m X P_n.
All rows (or columns) are linear recurrences with constant coefficients and the order of the recurrence of row m is at most 1 + A378941(m+1). At least for columns up to 7, this bound gives the actual order of the recurrence. The second differences of any column give those arrays that touch the top and bottom boundaries and have a recurrence order of 2 less since a finite state machine to enumerate these does not require states for empty rows. The number of states required is also considered in A140662 but does not take symmetry into account. - Andrew Howroyd, Dec 18 2024

Examples

			Table starts:
====================================================================
m\n|  1    2      3        4         5           6             7
---|----------------------------------------------------------------
1  |  1    3      6       10        15          21            28 ...
2  |  3   13     40      108       275         681          1664 ...
3  |  6   40    218     1126      5726       28992        146642 ...
4  | 10  108   1126    11506    116166     1168586      11749134 ...
5  | 15  275   5726   116166   2301877    45280509     889477656 ...
6  | 21  681  28992  1168586  45280509  1732082741   66037462454 ...
7  | 28 1664 146642 11749134 889477656 66037462454 4872949974666 ...
...
		

Crossrefs

Rows 2..5 are A059020, A059021, A059524, A378940.
Main diagonal is A059525.

A285765 Number of connected induced (non-null) subgraphs of the n X n queen graph.

Original entry on oeis.org

1, 15, 495, 64815, 33478163, 68694593248
Offset: 1

Views

Author

Giovanni Resta, May 04 2017

Keywords

Crossrefs

Cf. A020873 (wheel), A059020 (ladder), A059525 (grid), A286139 (king), A286182 (prism), A286183 (antiprism), A286184 (helm), A286185 (Möbius ladder), A286186 (friendship), A286187 (web), A286188 (gear), A286189 (rook).

Programs

  • Mathematica
    Table[g = GraphData[{"Queen", {n, n}}]; -1 + ParallelSum[ Boole@ ConnectedGraphQ@ Subgraph[g, s], {s, Subsets@ Range[n^2]}], {n, 4}]

A286186 Number of connected induced (non-null) subgraphs of the friendship graph with 2n+1 nodes.

Original entry on oeis.org

7, 22, 73, 268, 1039, 4114, 16405, 65560, 262171, 1048606, 4194337, 16777252, 67108903, 268435498, 1073741869, 4294967344, 17179869235, 68719476790, 274877907001, 1099511627836, 4398046511167, 17592186044482, 70368744177733, 281474976710728, 1125899906842699
Offset: 1

Views

Author

Giovanni Resta, May 04 2017

Keywords

Crossrefs

Cf. A020873 (wheel), A059020 (ladder), A059525 (grid), A286139 (king), A286182 (prism), A286183 (antiprism), A286184 (helm), A286185 (Möbius ladder), A286187 (web), A286188 (gear), A286189 (rook), A285765 (queen).

Programs

  • Mathematica
    Table[4^n + 3 n, {n, 30}]
    LinearRecurrence[{6,-9,4},{7,22,73},40] (* Harvey P. Dale, May 25 2019 *)
  • PARI
    Vec(x*(7 - 20*x + 4*x^2) / ((1 - x)^2*(1 - 4*x)) + O(x^30)) \\ Colin Barker, May 21 2017

Formula

a(n) = 4^n + 3*n.
From Colin Barker, May 21 2017: (Start)
G.f.: x*(7 - 20*x + 4*x^2) / ((1 - x)^2*(1 - 4*x)).
a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3) for n>3. (End)
E.g.f.: exp(x)*(exp(3*x) + 3*x) - 1. - Stefano Spezia, Aug 25 2022

A059021 Number of 3 X n checkerboards (with at least one red square) in which the set of red squares is edge-connected.

Original entry on oeis.org

0, 6, 40, 218, 1126, 5726, 28992, 146642, 741556, 3749816, 18961450, 95880894, 484833212, 2451616864, 12396892316, 62686360476, 316981037374, 1602852315476, 8105013367472, 40983964057352, 207240288658392
Offset: 0

Views

Author

John W. Layman, Dec 14 2000

Keywords

Comments

Number of nonzero 3 X n binary arrays with all 1's connected. Equivalently, the number of connected (non-null) induced subgraphs in the grid graph P_3 X P_n. - Andrew Howroyd, May 20 2017

Crossrefs

Row 3 of A287151.
See A059020 for the 2 X n case and A059524 for the 4 X n case.

Programs

  • Mathematica
    Table[-7/4 - 3 n/2 - RootSum[-1 + 7 # - #^2 - 6 #^3 + 11 #^4 - 7 #^5 + #^6 &, -60219359 #^n + 44281168 #^(1 + n) + 293383797 #^(2 + n) - 152425571 #^(3 + n) - 51762232 #^(4 + n) + 12785939 #^(5 + n) &]/2083234808, {n, 20}] (* Eric W. Weisstein, Aug 09 2017 *)
    LinearRecurrence[{9, -26, 35, -22, -3, 16, -9, 1}, {6, 40, 218, 1126, 5726, 28992, 146642, 741556}, 20] (* Eric W. Weisstein, Aug 09 2017 *)
  • PARI
    concat(0, Vec(-2*x*(x^5-4*x^4-3*x^3+7*x^2-7*x+3)/((x-1)^2*(x^6-7*x^5+x^4+6*x^3-11*x^2+7*x-1)) + O(x^100))) \\ Colin Barker, Nov 06 2014

Formula

a(n) = 9a(n-1) - 26a(n-2) + 35a(n-3) - 22a(n-4) - 3a(n-5) + 16a(n-6) - 9a(n-7) + a(n-8). - David Radcliffe, Jan 19 2001
G.f.: -2*x*(x^5-4*x^4-3*x^3+7*x^2-7*x+3) / ((x-1)^2*(x^6-7*x^5+x^4+6*x^3-11*x^2+7*x-1)). - Colin Barker, Nov 06 2014

A059524 Number of nonzero 4 X n binary arrays with all 1's connected.

Original entry on oeis.org

0, 10, 108, 1126, 11506, 116166, 1168586, 11749134, 118127408, 1187692422, 11941503498, 120064335342, 1207171430452, 12137349489598, 122033415224922, 1226969238084836, 12336404001299200, 124034783402890620, 1247091736942594618, 12538723071673581562
Offset: 0

Views

Author

David Radcliffe, Jan 21 2001

Keywords

Comments

Old name was "Number of 4 X n checkerboards in which the set of red squares is edge connected".
The number of connected (non-null) induced subgraphs in the grid graph P_4 X P_n. - Andrew Howroyd, May 20 2017

Examples

			a(1) = 10 because there are 4 positions to place a single 1, 3 ways to place a pair of adjacent 1's, 2 ways to place a triple of connected 1's, and 1 way for the all-1's array: 4+3+2+1=10. - _R. J. Mathar_, Mar 13 2023
		

Crossrefs

Row 4 of A287151.

Formula

Empirical g.f.: 2*x*(1 + x)*(5 - 36*x + 131*x^2 - 239*x^3 + 131*x^4 + 94*x^5 - 157*x^6 + 61*x^7 - 73*x^8 + 18*x^9 + x^10) / ((1 - x)^2*(1 - 15*x + 59*x^2 - 97*x^3 + 19*x^4 + 210*x^5 - 222*x^6 - 22*x^7 + 113*x^8 - 7*x^9 + 71*x^10 - 13*x^11 - x^12)). - Colin Barker, Oct 11 2017
The recurrence is correct. See A287151. - Andrew Howroyd, Dec 18 2024

Extensions

Clearer name from R. H. Hardin, Jul 06 2009
a(16) corrected by Andrew Howroyd, May 20 2017

A339136 Number of (undirected) cycles in the graph C_3 X P_n.

Original entry on oeis.org

1, 14, 63, 220, 701, 2154, 6523, 19640, 59001, 177094, 531383, 1594260, 4782901, 14348834, 43046643, 129140080, 387420401, 1162261374, 3486784303, 10460353100, 31381059501, 94143178714, 282429536363, 847288609320, 2541865828201, 7625597484854, 22876792454823, 68630377364740
Offset: 1

Views

Author

Seiichi Manyama, Nov 25 2020

Keywords

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_CnXPk(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
            grids.append((i + (n - 1) * k, i))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A339136(n):
        universe = make_CnXPk(3, n)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles()
        return cycles.len()
    print([A339136(n) for n in range(1, 20)])

Formula

Empirical g.f.: -x*(9*x+1) / ((x-1)^2 * (3*x-1)). - Vaclav Kotesovec, Dec 09 2020

A285934 Number of connected induced (non-null) subgraphs of the perfect binary tree of height n.

Original entry on oeis.org

1, 6, 37, 750, 459829, 210067308558, 44127887746326310604917, 1947270476915296449559791701269341583074001038
Offset: 0

Views

Author

Giovanni Resta, May 05 2017

Keywords

Comments

A perfect (sometimes called complete) binary tree of height k has 2^(k+1)-1 nodes.
a(8) has 91 digits and thus it is not reported.

Crossrefs

Cf. A003095, A020873 (wheel), A059020 (ladder), A059525 (grid), A286139 (king), A286182 (prism), A286183 (antiprism), A286184 (helm), A286185 (Möbius ladder), A286186 (friendship), A286187 (web), A286188 (gear), A286189 (rook), A285765 (queen).

Programs

  • Mathematica
    a[1]=b[1]=1; b[n_] := b[n] = 1 + b[n - 1]^2; a[n_] := a[n] = b[n]^2 + 2 a[n - 1]; Array[a, 8]

Formula

Let b(0)=1 and b(n) = 1+b(n-1)^2. Then, a(0)=1 and a(n) = b(n)^2 + 2*a(n-1). Note that b(n) = A003095(n+1).

A286191 a(n) = (2^n-1)^2 + 2*n.

Original entry on oeis.org

3, 13, 55, 233, 971, 3981, 16143, 65041, 261139, 1046549, 4190231, 16769049, 67092507, 268402717, 1073676319, 4294836257, 17179607075, 68718952485, 274876858407, 1099509530665, 4398042316843, 17592177655853, 70368727400495, 281474943156273, 1125899839733811
Offset: 1

Views

Author

Giovanni Resta, May 05 2017

Keywords

Comments

Number of connected induced (non-null) subgraphs of the complete bipartite graph K(n,n).

Crossrefs

Cf. A020873 (wheel), A059020 (ladder), A059525 (grid), A286139 (king), A286182 (prism), A286183 (antiprism), A286184 (helm), A286185 (Möbius ladder), A286186 (friendship), A286187 (web), A286188 (gear), A286189 (rook), A285765 (queen).

Programs

  • Mathematica
    a[n_] := (2^n-1)^2 + 2*n; Array[a, 30]
    Table[(2^n - 1)^2 + 2 n, {n, 20}] (* Eric W. Weisstein, Aug 09 2017 *)
    LinearRecurrence[{8, -21, 22, -8}, {3, 13, 55, 233}, 20] (* Eric W. Weisstein, Aug 09 2017 *)
    CoefficientList[Series[(3 - 11 x + 14 x^2)/((-1 + x)^2 (1 - 6 x + 8 x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 09 2017 *)
  • PARI
    Vec(x*(3 - 11*x + 14*x^2) / ((1 - x)^2*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, May 30 2017

Formula

a(n) = (2^n-1)^2 + 2*n.
From Colin Barker, May 30 2017: (Start)
G.f.: x*(3 - 11*x + 14*x^2) / ((1 - x)^2*(1 - 2*x)*(1 - 4*x)).
a(n) = 8*a(n-1) - 21*a(n-2) + 22*a(n-3) - 8*a(n-4) for n>4.
(End)

Extensions

Name changed to the formula by Eric W. Weisstein, Aug 09 2017

A286304 Number of connected induced (non-null) subgraphs of the complete binary tree with n nodes.

Original entry on oeis.org

1, 3, 6, 10, 17, 24, 37, 51, 78, 110, 173, 229, 340, 477, 750, 1024, 1571, 2253, 3616, 5024, 7839, 11356, 18389, 25173, 38740, 55697, 89610, 124870, 195389, 283536, 459829, 636123, 988710, 1429442, 2310905, 3227617, 5061040, 7352817, 11936370, 16526444
Offset: 1

Views

Author

Giovanni Resta, May 05 2017

Keywords

Crossrefs

Cf. A285934, A020873 (wheel), A059020 (ladder), A059525 (grid), A286139 (king), A286182 (prism), A286183 (antiprism), A286184 (helm), A286185 (Möbius ladder), A286186 (friendship), A286187 (web), A286188 (gear), A286189 (rook), A285765 (queen).

Programs

  • Mathematica
    Join[{1}, Table[g=KaryTree[n]; -1 + ParallelSum[Boole@ConnectedGraphQ@Subgraph[g, s], {s, Subsets@Range[n]}], {n, 2, 16}]]
    (* Second program: *)
    l[n_] := With[{h = 2^Floor[Log[2, n]]}, Min[h - 1, n - h/2]];
    b[n_] := b[n] = 1 + If[n <= 1, n, b[l[n]]*b[n - 1 - l[n]]];
    a[n_] := a[n] = If[n <= 1, n, b[n] - 1 + a[l[n]] + a[n - 1 - l[n]]];
    Array[a, 40] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
  • PARI
    l(n)={my(h=2^floor(log(n)/log(2))); min(h-1,n-h/2)}
    b(n)=1+if(n<=1,n,b(l(n))*b(n-1-l(n)));
    a(n)=if(n<=1,n,b(n)-1 + a(l(n)) + a(n-1-l(n))); \\ Andrew Howroyd, May 22 2017

Formula

a(2^k-1) = A285934(k-1).

Extensions

Terms a(35) and beyond from Andrew Howroyd, May 22 2017

A356828 Number of vertex cuts in the n-ladder graph P_2 x P_n.

Original entry on oeis.org

0, 2, 23, 147, 748, 3414, 14719, 61495, 252364, 1024938, 4137207, 16639339, 66775964, 267631726, 1071801407, 4290282671, 17168559452, 68692172578, 274811988823, 1099352487299, 4397662311948, 17591258505542, 70366504900671, 281469570617703, 1125886855379628
Offset: 1

Views

Author

Eric W. Weisstein, Aug 30 2022

Keywords

Crossrefs

Cf. A059020.

Programs

  • Mathematica
    Table[4^n + 2 n + (10 - LucasL[n + 3, 2])/4, {n, 20}]
    LinearRecurrence[{8, -20, 16, 1, -4}, {0, 2, 23, 147, 748}, 20]
    CoefficientList[Series[x (2 + x) (1 + 3 x)/((-1 + x)^2 (-1 + 4 x) (-1 + 2 x + x^2)), {x, 0, 20}], x]

Formula

a(n) = 4^n + 2*n + (10 - LucasL(n + 3, 2))/4.
a(n) = 8*a(n-1) - 20*a(n-2) + 16*a(n-3) + a(n-4) - 4*a(n-5).
G.f.: x^2*(2+x)*(1+3*x)/((-1+x)^2*(-1+4*x)*(-1+2*x + x^2)).
a(n) = 2^(2*n) - A059020(n) - 1. - Pontus von Brömssen, Aug 30 2022
Previous Showing 11-20 of 20 results.