cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A238743 Triangle read by rows: T(n,k) = A059382(n)/(A059382(k)*A059382(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 26, 26, 1, 1, 56, 208, 56, 1, 1, 124, 992, 992, 124, 1, 1, 182, 3224, 6944, 3224, 182, 1, 1, 342, 8892, 42408, 42408, 8892, 342, 1, 1, 448, 21888, 153216, 339264, 153216, 21888, 448, 1, 1, 702, 44928, 590976, 1920672, 1920672, 590976, 44928
Offset: 0

Views

Author

Tom Edgar, Mar 04 2014

Keywords

Comments

We assume that A059382(0)=1 since it would be the empty product.
These are the generalized binomial coefficients associated with the Jordan totient function J_3 given in A059376.
Another name might be the 3-totienomial coefficients.

Examples

			The first five terms in the third Jordan totient function are 1,7,26,56,124 and so T(4,2) = 56*26*7*1/((7*1)*(7*1))=208 and T(5,3) = 124*56*26*7*1/((26*7*1)*(7*1))=992.
The triangle begins
1
1 1
1 7   1
1 26  26   1
1 56  208  56   1
1 124 992  992  124  1
1 182 3224 6944 3224 182 1
		

Crossrefs

Programs

  • Sage
    q=100 #change q for more rows
    P=[0]+[i^3*prod([1-1/p^3 for p in prime_divisors(i)]) for i in [1..q]]
    [[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.

Formula

T(n,k) = A059382(n)/(A059382(k)* A059382(n-k)).
T(n,k) = prod_{i=1..n} A059376(i)/(prod_{i=1..k} A059376(i)*prod_{i=1..n-k} A059376(i)).
T(n,k) = A059376(n)/n*(k/A059376(k)*T(n-1,k-1)+(n-k)/A059376(n-k)*T(n-1,k)).

A309335 a(n) = n^3 if n odd, 7*n^3/8 if n even.

Original entry on oeis.org

0, 1, 7, 27, 56, 125, 189, 343, 448, 729, 875, 1331, 1512, 2197, 2401, 3375, 3584, 4913, 5103, 6859, 7000, 9261, 9317, 12167, 12096, 15625, 15379, 19683, 19208, 24389, 23625, 29791, 28672, 35937, 34391, 42875, 40824, 50653, 48013, 59319, 56000, 68921, 64827, 79507, 74536, 91125
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 24 2019

Keywords

Comments

Moebius transform of A007331.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[OddQ[n], n^3, 7 n^3/8]; Table[a[n], {n, 0, 45}]
    nmax = 45; CoefficientList[Series[x (1 + 7 x + 23 x^2 + 28 x^3 + 23 x^4 + 7 x^5 + x^6)/(1 - x^2)^4, {x, 0, nmax}], x]
    LinearRecurrence[{0, 4, 0, -6, 0, 4, 0, -1}, {0, 1, 7, 27, 56, 125, 189, 343}, 46]
    Table[n^3 (15 - (-1)^n)/16, {n, 0, 45}]

Formula

G.f.: x * (1 + 7*x + 23*x^2 + 28*x^3 + 23*x^4 + 7*x^5 + x^6)/(1 - x^2)^4.
G.f.: Sum_{k>=1} J_3(k) * x^k/(1 - x^(2*k)), where J_3() is the Jordan function (A059376).
Dirichlet g.f.: zeta(s-3) * (1 - 1/2^s).
a(n) = n^3 * (15 - (-1)^n)/16.
a(n) = Sum_{d|n, n/d odd} J_3(d).
Sum_{n>=1} 1/a(n) = 57*zeta(3)/56 = 1.223522205001729897639...
Multiplicative with a(2^e) = 7*2^(3*e-3), and a(p^e) = p^(3*e) for odd primes p. - Amiram Eldar, Oct 26 2020
Euler transform is A248882. - Georg Fischer, Nov 10 2020

A338548 a(n) = n^3 * Sum_{d|n} (-1)^(n/d + 1) * mu(d) / d^3.

Original entry on oeis.org

1, -9, 26, -56, 124, -234, 342, -448, 702, -1116, 1330, -1456, 2196, -3078, 3224, -3584, 4912, -6318, 6858, -6944, 8892, -11970, 12166, -11648, 15500, -19764, 18954, -19152, 24388, -29016, 29790, -28672, 34580, -44208, 42408, -39312, 50652, -61722, 57096, -55552, 68920, -80028
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 02 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n^3 Sum[(-1)^(n/d + 1) MoebiusMu[d]/d^3, {d, Divisors[n]}], {n, 1, 42}]
    nmax = 42; CoefficientList[Series[Sum[MoebiusMu[k] x^k (1 - 4 x^k + x^(2 k))/(1 + x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    f[p_, e_] := (p^3 - 1)*p^(3*(e - 1)); f[2, 1] = -9; f[2, e_] := -7*2^(3*(e - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = n^3 * sumdiv(n, d, (-1)^(n/d+1)*moebius(d)/d^3); \\ Michel Marcus, Nov 02 2020

Formula

G.f.: Sum_{k>=1} mu(k) * x^k * (1 - 4*x^k + x^(2*k)) / (1 + x^k)^4.
G.f. A(x) satisfies: A(x) = x * (1 - 4*x + x^2) / (1 + x)^4 - Sum_{k>=2} A(x^k).
Dirichlet g.f.: (1 - 2^(4 - s)) * zeta(s - 3) / zeta(s).
a(n) = J_3(n) if n odd, J_3(n) - 16 * J_3(n/2) if n even, where J_3 = A059376 (Jordan function J_3).
Multiplicative with a(2) = -9, a(2^e) = -7*2^(3*(e-1)) for e > 1, and a(p^e) = (p^3-1)*p^(3*(e-1)) for p > 2. - Amiram Eldar, Nov 15 2022

A373130 a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} sigma( n/gcd(x_1, x_2, x_3, n) ).

Original entry on oeis.org

1, 22, 105, 414, 745, 2310, 2737, 7134, 9231, 16390, 15961, 43470, 30745, 60214, 78225, 118238, 88417, 203082, 137161, 308430, 287385, 351142, 291985, 749070, 481245, 676390, 767391, 1133118, 731641, 1720950, 953281, 1924574, 1675905, 1945174, 2039065, 3821634
Offset: 1

Views

Author

Seiichi Manyama, May 26 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(4*e+2)*(p^2+p+1) - p^(3*e)*(p^3+p^2+p+1) + p)/(p^4-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 26 2024 *)
  • PARI
    J(n, k) = sumdiv(n, d, d^k*moebius(n/d));
    a(n, k=3, m=1) = sumdiv(n, d, J(d, k)*sigma(d^m));

Formula

a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} sigma( ( gcd(x_1, x_2, n)/gcd(x_1, x_2, x_3, n) )^3 ).
a(n) = Sum_{d|n} J_3(d) * sigma(d), where the Jordan totient function J_3(n) = A059376(n)
From Amiram Eldar, May 26 2024: (Start)
Multiplicative with a(p^e) = (p^(4*e+2)*(p^2+p+1) - p^(3*e)*(p^3+p^2+p+1) + p)/(p^4-1).
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = zeta(2) * zeta(5) * Product_{p prime} (1 - 1/p^4 - 1/p^5 + 1/p^6) = 1.54488120152452251241... . (End)

A373131 a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} sigma( ( n/gcd(x_1, x_2, x_3, n) )^2 ).

Original entry on oeis.org

1, 50, 339, 1786, 3845, 16950, 19495, 58682, 85281, 192250, 176891, 605454, 401869, 974750, 1303455, 1890106, 1507985, 4264050, 2612899, 6867170, 6608805, 8844550, 6727799, 19893198, 12109345, 20093450, 20802003, 34818070, 21241949, 65172750, 29581471, 60581690
Offset: 1

Views

Author

Seiichi Manyama, May 26 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(5*e+3)*(p^2+p+1) - p^(3*e)*(p^4+p^3+p^2+p+1) + p^2 + p)/(p^5-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 26 2024 *)
  • PARI
    J(n, k) = sumdiv(n, d, d^k*moebius(n/d));
    a(n, k=3, m=2) = sumdiv(n, d, J(d, k)*sigma(d^m));

Formula

a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} sigma( ( gcd(x_1, n)/gcd(x_1, x_2, x_3, n) )^3 ).
a(n) = Sum_{d|n} J_3(d) * sigma(d^2), where the Jordan totient function J_3(n) = A059376(n).
From Amiram Eldar, May 26 2024: (Start)
Multiplicative with a(p^e) = (p^(5*e+3)*(p^2+p+1) - p^(3*e)*(p^4+p^3+p^2+p+1) + p^2 + p)/(p^5-1).
Sum_{k=1..n} a(k) ~ c * n^6 / 6, where c = zeta(6) * Product_{p prime} (1 + 1/p^2 + 1/p^3 - 1/p^4) = 1.67666099579383196077... . (End)

A263829 Total number c_{pi_1(B_2)}(n) of n-coverings over the second amphicosm.

Original entry on oeis.org

1, 3, 5, 13, 7, 19, 9, 43, 18, 33, 13, 93, 15, 51, 35, 137, 19, 110, 21, 175, 45, 99, 25, 355, 38, 129, 58, 285, 31, 289, 33, 455, 65, 201, 63, 626, 39, 243, 75, 721, 43, 483, 45, 589, 126, 339, 49, 1305, 66, 498, 95, 783, 55, 750, 91, 1227
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2015

Keywords

Crossrefs

Programs

  • PARI
    A001001(n) = sumdiv(n, d, sigma(d) * d);
    A007429(n) = sumdiv(n, d, sigma(d));
    A007434(n) = sumdiv(n, d, moebius(n\d) * d^2);
    A059376(n) = sumdiv(n, d, moebius(n\d) * d^3);
    A060640(n) = sumdiv(n, d, sigma(n\d) * d);
    EpiPcZn(n) = sumdiv(n, d, moebius(n\d) * d^2 * gcd(d,2));
    S1(n)      = if (n%2, 0, A001001(n\2));
    S11(n)     = A060640(n) - if(n%2, 0, A060640(n\2));
    S21(n)     = if (n%2, 0, 2*A060640(n\2)) - if (n%4, 0, 2*A060640(n\4));
    S22(n)     = { if (n%2, A060640(n), if (n%4, 0,
      sumdiv(n\4, d, 2*d*(sigma(n\(2*d)) - sigma(n\(4*d))))));
    };
    A027844(n) = S1(n) + S11(n) + S21(n);
    a(n) = { 1/n * sumdiv(n, d,
      A059376(d) * S1(n\d) + EpiPcZn(d) * S21(n\d) + A007434(d) * S22(n\d));
    };
    vector(56, n, a(n))  \\ Gheorghe Coserea, May 04 2016

Extensions

More terms from Gheorghe Coserea, May 04 2016

A308418 Expansion of e.g.f. exp(x*(1 + 3*x + 6*x^2 + 3*x^3 + x^4)/(1 - x^2)^3).

Original entry on oeis.org

1, 1, 7, 73, 649, 8821, 122311, 2064637, 37933393, 773276329, 17257075111, 414876953041, 10780187135257, 298418920103773, 8812636845668839, 275368711393020421, 9091457478119636641, 315782978460465185617, 11511089733834178827463, 439231563093877354663129
Offset: 0

Views

Author

Ilya Gutkovskiy, May 25 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[Exp[x (1 + 3 x + 6 x^2 + 3 x^3 + x^4)/(1 - x^2)^3], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 19; CoefficientList[Series[Product[(1 + x^k)^(DirichletConvolve[j^3, MoebiusMu[j], j, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[1/8 (7 - (-1)^k) k^2 k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 19}]
  • PARI
    my(x ='x + O('x^30)); Vec(serlaplace(exp(x*(1+3*x+6*x^2+3*x^3+x^4)/(1-x^2)^3))) \\ Michel Marcus, May 26 2019

Formula

E.g.f.: exp(Sum_{k>=1} J_2(k)*x^k/(1 - x^(2*k))), where J_2() is the Jordan function (A007434).
E.g.f.: Product_{k>=1} (1 + x^k)^(J_3(k)/k), where J_3() is the Jordan function (A059376).
a(n) ~ 2^(-5/4) * 21^(1/8) * n^(n - 1/8) * exp(2^(3/2) * 3^(-3/4) * 7^(1/4) * n^(3/4) - n). - Vaclav Kotesovec, May 28 2019
E.g.f.: exp(Sum_{k>=1} A308422(k)*x^k). - Ilya Gutkovskiy, May 29 2019

A328408 G.f. A(x) satisfies: A(x) = A(x^2) + x * (1 + 4*x + x^2) / (1 - x)^4.

Original entry on oeis.org

1, 9, 27, 73, 125, 243, 343, 585, 729, 1125, 1331, 1971, 2197, 3087, 3375, 4681, 4913, 6561, 6859, 9125, 9261, 11979, 12167, 15795, 15625, 19773, 19683, 25039, 24389, 30375, 29791, 37449, 35937, 44217, 42875, 53217, 50653, 61731, 59319, 73125, 68921, 83349, 79507, 97163, 91125
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 14 2019

Keywords

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else IsOdd(n) select n^3 else Self(n div 2)+n^3 :n in [1..45]]; // Marius A. Burtea, Oct 15 2019
  • Mathematica
    nmax = 45; CoefficientList[Series[Sum[x^(2^k) (1 + 4 x^(2^k) + x^(2^(k + 1)))/(1 - x^(2^k))^4, {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x] // Rest
    a[n_] := If[EvenQ[n], a[n/2] + n^3, n^3]; Table[a[n], {n, 1, 45}]
    Table[DivisorSum[n, Boole[IntegerQ[Log[2, n/#]]] #^3 &], {n, 1, 45}]
    f[p_, e_] :=p^(3*e); f[2, e_] := (8^(e+1)-1)/7; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 23 2023 *)

Formula

G.f.: Sum_{k>=0} x^(2^k) * (1 + 4*x^(2^k) + x^(2^(k+1))) / (1 - x^(2^k))^4.
G.f.: (1/7) * Sum_{k>=1} J_3(2*k) * x^k / (1 - x^k), where J_3() is the Jordan function (A059376).
Dirichlet g.f.: zeta(s-3) / (1 - 2^(-s)).
a(2*n) = a(n) + 8*n^3, a(2*n+1) = (2*n + 1)^3.
a(n) = Sum_{d|n} A209229(n/d) * d^3.
Product_{n>=1} (1 + x^n)^a(n) = g.f. for A023872.
Sum_{k=1..n} a(k) ~ 4*n^4/15. - Vaclav Kotesovec, Oct 15 2019
Multiplicative with a(2^e) = (8^(e+1)-1)/7, and a(p^e) = p^(3*e) for an odd prime p. - Amiram Eldar, Oct 23 2023

A381713 a(n) = J_9(n)/J_3(n), where J_k is the k-th Jordan totient function.

Original entry on oeis.org

1, 73, 757, 4672, 15751, 55261, 117993, 299008, 551853, 1149823, 1772893, 3536704, 4829007, 8613489, 11923507, 19136512, 24142483, 40285269, 47052741, 73588672, 89320701, 129421189, 148048057, 226349056, 246109375, 352517511, 402300837, 551263296
Offset: 1

Views

Author

Seiichi Manyama, Mar 05 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(6*e) * (1 + 1/p^3 + 1/p^6); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 28] (* Amiram Eldar, Mar 05 2025 *)
  • PARI
    J(n, k) = sumdiv(n, d, d^k*moebius(n/d));
    a(n) = J(n, 9)/J(n, 3);
    
  • PARI
    a(n) = {my(p = factor(n)[, 1]); n^6 * prod(i = 1, #p, 1 + 1/p[i]^3 + 1/p[i]^6);} \\ Amiram Eldar, Mar 05 2025

Formula

a(n) = A069094(n)/A059376(n).
a(n) = n^6 * Product_{distinct primes p dividing n} (1 + 1/p^3 + 1/p^6).
From Amiram Eldar, Mar 05 2025: (Start)
Dirichlet g.f.: zeta(s-6) * Product_{p prime} (1 + 1/p^(s-3) + 1/p^s).
Sum_{k=1..n} a(k) ~ c * n^7 / 7, where c = Product_{p prime} (1 + 1/p^4 + 1/p^7) = 1.08635980686198102055... .
Sum_{n>=1} 1/a(n) = zeta(6)*zeta(9) * Product_{p prime} (1 - 2/p^9 + 1/p^15) = 1.01533121878447451064... . (End)

A338165 Dirichlet g.f.: (zeta(s-3) / zeta(s))^2.

Original entry on oeis.org

1, 14, 52, 161, 248, 728, 684, 1680, 2080, 3472, 2660, 8372, 4392, 9576, 12896, 16576, 9824, 29120, 13716, 39928, 35568, 37240, 24332, 87360, 46376, 61488, 74412, 110124, 48776, 180544, 59580, 157696, 138320, 137536, 169632, 334880, 101304, 192024, 228384, 416640
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 14 2020

Keywords

Comments

Dirichlet convolution of Jordan function J_3 (A059376) with itself.

Crossrefs

Programs

  • Mathematica
    Jordan3[n_] := Sum[d^3 MoebiusMu[n/d], {d, Divisors[n]}]; a[n_] := Sum[Jordan3[d] Jordan3[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 40}]
    a[1] = 1; f[p_, e_] := p^(3 e - 6) (p^6 + e (p^3 - 1)^2 - 1); a[n_] := Times @@ f @@@ FactorInteger[n]; Table[a[n], {n, 1, 40}]

Formula

Multiplicative with a(p^e) = p^(3*e - 6) * (p^6 + e * (p^3 - 1)^2 - 1).
a(n) = Sum_{d|n} J_3(d) * J_3(n/d).
a(n) = Sum_{d|n} d^3 * tau(d) * A007427(n/d), where tau = A000005.
(1/tau(n)) * Sum_{d|n} a(d) * tau(n/d) = n^3.
Sum_{k=1..n} a(k) ~ 2025 * n^4 * ((log(n) + 2*gamma - 1/4)/Pi^8 - 180*zeta'(4) / Pi^12), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 14 2020
Previous Showing 31-40 of 46 results. Next