cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A194000 Triangular array: the self-fission of (p(n,x)), where sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers).

Original entry on oeis.org

1, 2, 3, 3, 5, 9, 5, 8, 15, 24, 8, 13, 24, 39, 64, 13, 21, 39, 63, 104, 168, 21, 34, 63, 102, 168, 272, 441, 34, 55, 102, 165, 272, 440, 714, 1155, 55, 89, 165, 267, 440, 712, 1155, 1869, 3025, 89, 144, 267, 432, 712, 1152, 1869, 3024, 4895, 7920, 144, 233
Offset: 0

Views

Author

Clark Kimberling, Aug 11 2011

Keywords

Comments

See A193917 for the self-fusion of the same sequence of polynomials. (Fusion is defined at A193822; fission, at A193842; see A202503 and A202453 for infinite-matrix representations of fusion and fission.)
...
First five rows of P (triangle of coefficients of polynomials p(n,x)):
1
1...1
1...1...2
1...1...2...3
1...1...2...3...5
First eight rows of A194000:
1
2....3
3....5....9
5....8....15...24
8....13...24...39...64
13...21...29...63...104...168
21...34...63...102..168...272...441
34...55...102..165..272...440...714..1155
...
col 1: A000045
col 2: A000045
col 3: A022086
col 4: A022086
col 5: A022091
col 6: A022091
right edge, d(n,n): A064831
d(n,n-1): A059840
d(n,n-2): A080097
d(n,n-3): A080143
d(n,n-4): A080144
...
Suppose n is an odd positive integer and d(n+1,x) is the polynomial matched to row n+1 of A194000 as in the Mathematica program (and definition of fission at A193842), where the first row is counted as row 0.

Examples

			First six rows:
1
2....3
3....5....9
5....8....15...24
8....13...24...39...64
13...21...29...63...104...168
...
Referring to the matrix product for fission at A193842,
the row (5,8,15,24) is the product of P(4) and QQ, where
P(4)=(p(4,4), p(4,3), p(4,2), p(4,1))=(5,3,2,1); and
QQ is the 4x4 matrix
(1..1..2..3)
(0..1..1..2)
(0..0..1..1)
(0..0..0..1).
		

Crossrefs

Programs

  • Mathematica
    z = 11;
    p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
    q[n_, x_] := p[n, x];
    p1[n_, k_] := Coefficient[p[n, x], x^k];
    p1[n_, 0] := p[n, x] /. x -> 0;
    d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
    h[n_] := CoefficientList[d[n, x], {x}]
    TableForm[Table[Reverse[h[n]], {n, 0, z}]]
    Flatten[Table[Reverse[h[n]], {n, -1, z}]]  (* A194000 *)
    TableForm[Table[h[n], {n, 0, z}]]
    Flatten[Table[h[n], {n, -1, z}]]  (* A194001 *)

A228873 a(n) = F(n) * F(n+1) * F(n+2) * F(n+3), the product of four consecutive Fibonacci numbers, A000045.

Original entry on oeis.org

6, 30, 240, 1560, 10920, 74256, 510510, 3495030, 23965920, 164237040, 1125770256, 7715953440, 52886430870, 362487682830, 2484530961360, 17029219589256, 116720030923320, 800010932051760, 5483356663145790, 37583485265670630, 257601041359736256
Offset: 1

Views

Author

T. D. Noe, Sep 24 2013

Keywords

Comments

Mohanty and Mohanty prove in Corollary 2.5 that these numbers are Pythagorean. The number a(n) is primitive Pythagorean if F(n) and F(n+1) have opposite parity. Every third number, starting at a(1) = 6, is not primitive Pythagorean.
Since a(n) = F(n+1)*F(n+2)*(F(n+2)^2 - F(n+1)^2), a(n) is in A073120. - Robert Israel, Apr 06 2015

Crossrefs

Cf. A000045 (Fibonacci numbers), A228874 (similar sequence for Lucas numbers).
Cf. A009112 (Pythagorean numbers), A024365, A073120.

Programs

  • Magma
    [Fibonacci(n)*Fibonacci(n+1)*Fibonacci(n+2)*Fibonacci(n+3): n in [1..30]]; // Vincenzo Librandi, Oct 04 2013
  • Maple
    seq(mul(combinat:-fibonacci(i),i=n..n+3),n=1..30); # Robert Israel, Apr 06 2015
  • Mathematica
    Table[Fibonacci[n] Fibonacci[n+1] Fibonacci[n+2] Fibonacci[n+3], {n, 25}]
    CoefficientList[Series[-6/((x - 1) (x^2 + 3 x + 1) (x^2 - 7 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 04 2013 *)
    Times@@@Partition[Fibonacci[Range[30]],4,1] (* Harvey P. Dale, Dec 23 2013 *)
    LinearRecurrence[{5,15,-15,-5,1},{6,30,240,1560,10920},30] (* Harvey P. Dale, Jul 24 2021 *)

Formula

G.f.: -6*x/((x-1)*(x^2+3*x+1)*(x^2-7*x+1)). - Alois P. Heinz, Oct 02 2013
a(n+5) = 5*a(n+4)+15*a(n+3)-15*a(n+2)-5*a(n+1)+a(n). - Robert Israel, Apr 06 2015
a(n) = 2 * A000217(A059840(n+2)). - Diego Rattaggi, Jan 27 2021
Sum_{n>=1} 1/a(n) = (12-5*sqrt(5))/4. - Diego Rattaggi, Aug 16 2021
a(n) = 3 * Sum_{k=1..n} 2^(n-k)*F(k)^2*F(k+1)*F(k+2) (Seiffert, 2006). - Amiram Eldar, Jan 11 2022

A214729 Member m=6 of the m-family of sums b(m,n) = Sum_{k=0..n} F(k+m)*F(k), m >= 0, n >= 0, with the Fibonacci numbers F.

Original entry on oeis.org

0, 13, 34, 102, 267, 712, 1864, 4893, 12810, 33550, 87835, 229968, 602064, 1576237, 4126642, 10803702, 28284459, 74049688, 193864600, 507544125, 1328767770, 3478759198, 9107509819, 23843770272, 62423800992, 163427632717, 427859097154, 1120149658758
Offset: 0

Views

Author

Wolfdieter Lang, Jul 27 2012

Keywords

Comments

See the comment section on A080144 for the general formula and the o.g.f. for b(m,n).

Crossrefs

Cf. A001654, A027941, A059840(n+2), A064831, A080097, A080143 and A080144 for the m=0,1,...,5 members.
Cf. A027941.

Programs

  • Magma
    [(9*(-1)^(n+1)-20+Lucas(2*n+7))/5: n in [0..40]]; // Vincenzo Librandi, Aug 26 2017
    
  • Mathematica
    With[{m = 6}, Table[Sum[Fibonacci[k + m]*Fibonacci[k], {k, 0, n}], {n, 0, 25}]] (* or *)
    Table[(9 (-1)^(n + 1) - 20 + LucasL[2 n + 7])/5, {n, 0, 25}] (* Michael De Vlieger, Aug 23 2017 *)
    LinearRecurrence[{3,0,-3,1},{0,13,34,102},40] (* Harvey P. Dale, Jun 13 2022 *)
  • PARI
    concat(0, Vec(x*(13 - 5*x) / ((1 - x)*(1 + x)*(1 - 3*x + x^2)) + O(x^30))) \\ Colin Barker, Aug 25 2017
    
  • SageMath
    [fibonacci(n+3)*fibonacci(n+4) - 2*(2+(-1)^n) for n in range(41)] # G. C. Greubel, Dec 31 2023

Formula

a(n) = b(6,n) = 4*A027941(n) + 9*A001654(n), with A027941(n) = Fibonacci(2*n+1) - 1 and A001654(n) = Fibonacci(n+1)*Fibonacci(n), n >= 0. 4 = Fibonacci(6)/2 and 9 = LucasL(6)/2.
O.g.f.: x*(13-5*x)/((1-x^2)*(1-3*x+x^2)) (see a comment above). - Wolfdieter Lang, Jul 30 2012
a(n) = (9*(-1)^(n+1) - 20 + Lucas(2*n + 7))/5. - Ehren Metcalfe, Aug 21 2017
From Colin Barker, Aug 25 2017: (Start)
a(n) = (1/10)*((29 - 13*sqrt(5))*((3 - sqrt(5))/2)^n + (29 + 13*sqrt(5))*((3 + sqrt(5))/2)^n - 2*(20 + 9*(-1)^n) ).
a(n) = 2*a(n-1) + 2*a(n-2) + 2*a(n-3) - a(n-4) for n>3. (End)
a(n) = A001654(n+3) - 2*(2 + (-1)^n). - G. C. Greubel, Dec 31 2023

A027418 Duplicate of A035508.

Original entry on oeis.org

0, 2, 7, 20, 54, 143, 376, 986, 2583, 6764, 17710, 46367, 121392, 317810
Offset: 1

Views

Author

Keywords

Crossrefs

Bisection of A000071 and A007492. Pairwise sums of A059840.
Previous Showing 11-14 of 14 results.