A194000 Triangular array: the self-fission of (p(n,x)), where sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers).
1, 2, 3, 3, 5, 9, 5, 8, 15, 24, 8, 13, 24, 39, 64, 13, 21, 39, 63, 104, 168, 21, 34, 63, 102, 168, 272, 441, 34, 55, 102, 165, 272, 440, 714, 1155, 55, 89, 165, 267, 440, 712, 1155, 1869, 3025, 89, 144, 267, 432, 712, 1152, 1869, 3024, 4895, 7920, 144, 233
Offset: 0
Examples
First six rows: 1 2....3 3....5....9 5....8....15...24 8....13...24...39...64 13...21...29...63...104...168 ... Referring to the matrix product for fission at A193842, the row (5,8,15,24) is the product of P(4) and QQ, where P(4)=(p(4,4), p(4,3), p(4,2), p(4,1))=(5,3,2,1); and QQ is the 4x4 matrix (1..1..2..3) (0..1..1..2) (0..0..1..1) (0..0..0..1).
Programs
-
Mathematica
z = 11; p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}]; q[n_, x_] := p[n, x]; p1[n_, k_] := Coefficient[p[n, x], x^k]; p1[n_, 0] := p[n, x] /. x -> 0; d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}] h[n_] := CoefficientList[d[n, x], {x}] TableForm[Table[Reverse[h[n]], {n, 0, z}]] Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A194000 *) TableForm[Table[h[n], {n, 0, z}]] Flatten[Table[h[n], {n, -1, z}]] (* A194001 *)
Comments