cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 113 results. Next

A071585 Numerator of the continued fraction expansion whose terms are the first-order differences of exponents in the binary representation of 4*n, with the exponents of 2 being listed in descending order.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 4, 5, 5, 7, 7, 8, 5, 7, 7, 8, 6, 9, 10, 11, 9, 12, 11, 13, 6, 9, 10, 11, 9, 12, 11, 13, 7, 11, 13, 14, 13, 17, 15, 18, 11, 16, 17, 19, 14, 19, 18, 21, 7, 11, 13, 14, 13, 17, 15, 18, 11, 16, 17, 19, 14, 19, 18, 21, 8, 13, 16, 17, 17, 22, 19, 23, 16, 23, 24, 27, 19
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2002

Keywords

Comments

Thus a(n)/a(m) = d_1 + 1/(d_2 + 1/(d_3 + ... + 1/d_k)) where m = n - 2^floor(log_2(n)) + 1 and where d_j = b_j - b_(j+1) are the differences of the binary exponents b_j > b_(j+1) defined by: 4*n = 2^b_1 + 2^b_2 + 2^b_3 + ... 2^b_k.
All the rationals are uniquely represented by this sequence - compare Stern's diatomic sequence A002487.
This sequence lists the rationals >= 1 in order by the sum of the terms of their continued fraction expansions. For example, the numerators generated from partitions of 5 that do not end with 1 are listed together as 5, 7, 7, 8, 5, 7, 7, 8, since: 5/1 = [5]; 7/2 = [3;2]; 7/3 = [2;3]; 8/3 = [2;1,2]; 5/4 = [1;4]; 7/5 = [1;2,2]; 7/4 = [1;1,3]; 8/5 = [1;1,1,2].
From Yosu Yurramendi, Jun 23 2014: (Start)
If the terms (n>0) are written as an array:
1,
2,
3, 3,
4, 5, 4, 5,
5, 7, 7, 8, 5, 7, 7, 8,
6, 9,10,11, 9,12,11,13, 6, 9,10,11, 9,12,11,13,
7,11,13,14,13,17,15,18,11,16,17,19,14,19,18,21,7,11,13,14,13,17,15,18,11, ...
then the sum of the k-th row is 2*3^(k-2) for k>1, each column is an arithmetic progression. The differences of the arithmetic sequences give the sequence A071585 itself: a(2^(p+1)+k) - a(2^p+k) = a(k). A002487 and A007306 also have these properties. The first terms of columns, excluding a(0), give A086593.
If the rows (n>0) are written on right:
1;
2;
3, 3;
4, 5, 4, 5;
5, 7, 7, 8, 5, 7, 7, 8;
6, 9, 10, 11, 9, 12, 11, 13, 6, 9, 10, 11, 9, 12, 11, 13;
then each column is a Fibonacci sequence: a(2^(p+2)+k) = a(2^(p+1)+k) + a(2^p+k). The first terms of columns, excluding a(0), give A086593. (End)
n>1 occurs in this sequence phi(n) = A000010(n) times, as it occurs in A007306 (Franklin T. Adams-Watters's comment), that is the sequence obtained by adding numerator and denominator in the Calkin-Wilf enumeration system of positive rationals. A229742(n)/A071766(n) is also an enumeration system of all positive rationals (HCS system), and in each level m >= 0 (ranks between 2^m and 2^(m+1)-1) rationals are the same in both systems. Thus a(n) (A229742(n)+A071766(n)) has the same terms in each level as A007306. The same property occurs in all numerator+denominator sequences of enumeration systems of positive rationals, as, for example, A007306 (A007305+A047679), A086592 (A020650+A020651), and A268087 (A162909+A162910). - Yosu Yurramendi, Apr 06 2016
a(n) = A086592(A059893(n)), a(A059893(n)) = A086592(n), n > 0. - Yosu Yurramendi, May 30 2017

Examples

			a(37)=17 as it is the numerator of 17/5 = 3 + 1/(2 + 1/2), which is a continued fraction that can be derived from the binary expansion of 4*37 = 2^7 + 2^4 + 2^2; the binary exponents are {7, 4, 2}, thus the differences of these exponents are {3, 2, 2}; giving the continued fraction expansion of 17/5=[3,2,2].
Illustration of Sum_{m=0..2^(k-1)-1} a(2^k + m) = 3^k:
k=2: 3^2 = a(2^2) + a(2^2 + 1) = 4 + 5;
k=3: 3^3 = a(2^3) + a(2^3 + 1) + a(2^3 + 2) + a(2^3 + 3) = 5 + 7 + 7 + 8;
k=4: 3^4 = a(2^4) + a(2^4+1) + a(2^4+2) + a(2^4+3) + a(2^4+4) + a(2^4+5) + a(2^4+6) + a(2^4+7) = 6 + 9 + 10 + 11 + 9 + 12 + 11 + 13.
1, 2, 3, 3/2, 4, 5/2, 4/3, 5/3, 5, 7/2, 7/3, 8/3, 5/4, 7/5, 7/4, 8/5, 6, ...
From _Yosu Yurramendi_, Jun 27 2014: (Start)
a(0) =             = 1;
a(1) = a(0) + a(0) = 2;
a(2) = a(0) + a(1) = 3;
a(3) = a(1) + a(0) = 3;
a(4) = a(0) + a(2) = 4;
a(5) = a(1) + a(3) = 5;
a(6) = a(2) + a(0) = 4;
a(7) = a(3) + a(1) = 5;
a(8) = a(0) + a(4) = 5;
a(9) = a(1) + a(5) = 7;
a(10) = a(2) + a(6) = 7;
a(11) = a(3) + a(7) = 8;
a(12) = a(4) + a(0) = 5;
a(13) = a(5) + a(1) = 7;
a(14) = a(6) + a(2) = 7;
a(15) = a(7) + a(3) = 8. (End)
		

Crossrefs

Cf. A071766.

Programs

  • Mathematica
    ncf[n_]:=Module[{br=Reverse[Flatten[Position[Reverse[IntegerDigits[4 n,2]],1]-1]]}, Numerator[FromContinuedFraction[Flatten[Join[{Abs[ Differences[ br]],Last[br]}]]]]]; Join[{1},Array[ncf,80]] (* Harvey P. Dale, Jul 01 2012 *)
    {1}~Join~Table[Numerator@ FromContinuedFraction@ Append[Abs@ Differences@ #, Last@ #] &@ Log2[NumberExpand[4 n, 2] /. 0 -> Nothing], {n, 120}] (* Version 11, or *)
    {1}~Join~Table[Numerator@ FromContinuedFraction@ Append[Abs@ Differences@ #, Last@ #] &@ Log2@ DeleteCases[# Reverse[2^Range[0, Length@ # - 1]] &@ IntegerDigits[4 n, 2], k_ /; k == 0], {n, 120}] (* Michael De Vlieger, Aug 15 2016 *)
  • R
    blocklevel <- 7  # arbitrary
    a <- c(1,2)
    for(k in 1:blocklevel)
    a <- c(a, a + c(a[((length(a)/2)+1):length(a)],a[1:(length(a)/2)]))
    a
    # Yosu Yurramendi, Jun 26 2014
    
  • R
    blocklevel <- 7  # arbitrary
    a <- c(1,2)
    for(p in 0:blocklevel)
      for(k in 1:2^(p+1)){
        if (k <=  2^p) a[k + 2^(p+1)] = a[k] + a[k + 2^p]
        else           a[k + 2^(p+1)] = a[k] + a[k - 2^p]
    }
    a
    # Yosu Yurramendi, Jun 27 2014

Formula

a(2^k + 2^j + m) = (k-j)*a(2^j + m) + a(m) when 2^k > 2^j > m >= 0.
a(0) = 1, a(2^k) = k + 2,
a(2^k + 1) = 2*k + 1 (k>0),
a(2^k + 2) = 3*k - 2 (k>1),
a(2^k + 3) = 3*k - 1 (k>1),
a(2^k + 4) = 4*k - 7 (k>2).
a(2^k - 1) = Fibonacci(k+2) = A000045(k+2).
Sum_{m=0..2^(k-1)-1} a(2^k + m) = 3^k (k>0).
From Yosu Yurramendi, Jun 27 2014: (Start)
Write n = k + 2^(m+1), k = 0,1,2,...,2^(m+1)-1, m = 0,1,2,...
if 0 <= k < 2^m, a(k + 2^(m+1)) = a(k) + a(k + 2^m).
if 2^m <= k < 2^(m+1), a(k + 2^(m+1)) = a(k) + a(k - 2^m).
with a(0)=1, a(1)=2. (End)
a(n) = A059893(A086592(n)), n>0. - Yosu Yurramendi, Apr 09 2016
a(n) = A093873(n) + A093875(n), n > 0. - Yosu Yurramendi, Jul 22 2016
a(n) = A093873(2n) + A093873(2n+1), n > 0; a(n) = A093875(2n) = A093875(2n+1), n > 0. - Yosu Yurramendi, Jul 25 2016
a(n) = sqrt(A071766(2^(m+1)+n)*A229742(2^(m+1)+n) - A071766(2^m+n)*A229742(2^m+n)), for n > 0, where m = floor(log_2(n)+1). - Yosu Yurramendi, Jun 10 2019
a(n) = A007306(A059893(A233279(n))), n > 0. - Yosu Yurramendi, Aug 07 2021
a(n) = A007306(A059894(A006068(n))), n > 0. - Yosu Yurramendi, Sep 29 2021
Conjecture: a(n) = a(floor(n/2)) + Sum_{k=1..A000120(n)} a(b(n, k))*(-1)^(k-1) for n > 0 with a(0) = 1 where b(n, k) = A025480(b(n, k-1) - 1) for n > 0, k > 0 with b(n, 0) = n. - Mikhail Kurkov, Feb 20 2023

A154435 Permutation of nonnegative integers induced by Lamplighter group generating wreath recursion, variant 3: a = s(b,a), b = (a,b), starting from the state a.

Original entry on oeis.org

0, 1, 3, 2, 6, 7, 5, 4, 13, 12, 14, 15, 10, 11, 9, 8, 26, 27, 25, 24, 29, 28, 30, 31, 21, 20, 22, 23, 18, 19, 17, 16, 53, 52, 54, 55, 50, 51, 49, 48, 58, 59, 57, 56, 61, 60, 62, 63, 42, 43, 41, 40, 45, 44, 46, 47, 37, 36, 38, 39, 34, 35, 33, 32, 106, 107, 105, 104, 109, 108
Offset: 0

Views

Author

Antti Karttunen, Jan 17 2009

Keywords

Comments

This permutation is induced by the third Lamplighter group generating wreath recursion a = s(b,a), b = (a,b) (i.e., binary transducer, where s means that the bits at that state are toggled: 0 <-> 1) given on page 104 of Bondarenko, Grigorchuk, et al. paper, starting from the active (swapping) state a and rewriting bits from the second most significant bit to the least significant end.

Examples

			475 = 111011011 in binary. Starting from the second most significant bit and, as we begin with the swapping state a, we complement the bits up to and including the first zero encountered and so the beginning of the binary expansion is complemented as 1001....., then, as we switch to the inactive state b, the following bits are kept same, again up to and including the first zero encountered, after which the binary expansion is 1001110.., after which we switch again to the active state (state a), which complements the two rightmost 1's and we obtain the final answer 100111000, which is 312's binary representation, thus a(475)=312.
		

Crossrefs

Inverse: A154436. a(n) = A059893(A154437(A059893(n))) = A054429(A006068(A054429(n))). Corresponds to A122301 in the group of Catalan bijections. Cf. also A153141-A153142, A154439-A154448, A072376.

Programs

  • Python
    from sympy import floor
    def a006068(n):
        s=1
        while True:
            ns=n>>s
            if ns==0: break
            n=n^ns
            s<<=1
        return n
    def a054429(n): return 1 if n==1 else 2*a054429(floor(n/2)) + 1 - n%2
    def a(n): return 0 if n==0 else a054429(a006068(a054429(n))) # Indranil Ghosh, Jun 11 2017
    
  • R
    maxn <- 63 # by choice
    a <- c(1,3,2) # If it were a <- 1:3, it would be A180200
    for(n in 2:maxn){
      a[2*n  ] <- 2*a[n] + (a[n]%%2 == 0)
      a[2*n+1] <- 2*a[n] + (a[n]%%2 != 0)  }
    a
    # Yosu Yurramendi, Jun 21 2020

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A359043 Sum of adjusted partial sums of the n-th composition in standard order (A066099). Row sums of A242628.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 3, 3, 4, 6, 5, 6, 4, 5, 4, 4, 5, 8, 7, 9, 6, 8, 7, 8, 5, 7, 6, 7, 5, 6, 5, 5, 6, 10, 9, 12, 8, 11, 10, 12, 7, 10, 9, 11, 8, 10, 9, 10, 6, 9, 8, 10, 7, 9, 8, 9, 6, 8, 7, 8, 6, 7, 6, 6, 7, 12, 11, 15, 10, 14, 13, 16, 9, 13, 12, 15, 11, 14, 13
Offset: 0

Views

Author

Gus Wiseman, Dec 21 2022

Keywords

Comments

We define the adjusted partial sums of a composition to be obtained by subtracting one from all parts, taking partial sums, and adding one back to all parts.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 29th composition in standard order is (1,1,2,1), with adjusted partial sums (1,1,2,2), with sum 6, so a(29) = 6.
		

Crossrefs

See link for sequences related to standard compositions.
The unadjusted reverse version is A029931, row sums of A048793.
The reverse version is A161511, row sums of A125106.
Row sums of A242628, ranked by A253565.
The unadjusted version is A359042, row sums of A358134.
A011782 counts compositions.
A066099 lists standard compositions.
A358135 gives last minus first of standard compositions.
A358194 counts partitions by sum and weighted sum.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[Accumulate[stc[n]-1]+1],{n,0,100}]

A372428 Sum of binary indices of n minus sum of prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 3, 2, 4, 5, 1, -1, 2, 0, 3, 3, 4, 2, 4, 4, 4, 6, 6, 3, 8, 4, 1, 0, 0, 2, 3, -2, 2, 4, 4, -2, 5, -1, 6, 7, 5, 1, 5, 4, 6, 5, 6, -1, 9, 9, 8, 6, 6, 1, 11, 1, 8, 13, 1, -1, 1, -9, 1, 0, 4, -7, 4, -9, 0, 6, 4, 6, 7, -5, 5, 5, 0, -8
Offset: 1

Views

Author

Gus Wiseman, May 02 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The binary indices of 65 are {1,7}, and the prime indices are {3,6}, so a(65) = 8 - 9 = -1.
		

Crossrefs

Positions of zeros are A372427.
For minimum instead of sum we have A372437.
For length instead of sum we have A372441, zeros A071814.
For maximum instead of sum we have A372442, zeros A372436.
Positions of odd terms are A372586, even A372587.
A003963 gives product of prime indices.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Total[bix[n]]-Total[prix[n]],{n,100}]
  • Python
    from itertools import count, islice
    from sympy import sieve, factorint
    def a_gen():
        for n in count(1):
            b = sum((i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1')
            p = sum(sieve.search(i)[0] for i in factorint(n, multiple=True))
            yield(b-p)
    A372428_list = list(islice(a_gen(), 83)) # John Tyler Rascoe, May 04 2024
    
  • Python
    from sympy import primepi, factorint
    def A372428(n): return int(sum(i for i, j in enumerate(bin(n)[:1:-1],1) if j=='1')-sum(primepi(p)*e for p, e in factorint(n).items())) # Chai Wah Wu, Oct 18 2024

Formula

a(n) = A029931(n) - A056239(n).

A154436 Permutation of nonnegative integers induced by Lamplighter group generating wreath recursion, variant 1: a = s(a,b), b = (a,b), starting from the state a.

Original entry on oeis.org

0, 1, 3, 2, 7, 6, 4, 5, 15, 14, 12, 13, 9, 8, 10, 11, 31, 30, 28, 29, 25, 24, 26, 27, 19, 18, 16, 17, 21, 20, 22, 23, 63, 62, 60, 61, 57, 56, 58, 59, 51, 50, 48, 49, 53, 52, 54, 55, 39, 38, 36, 37, 33, 32, 34, 35, 43, 42, 40, 41, 45, 44, 46, 47, 127, 126, 124, 125, 121, 120
Offset: 0

Views

Author

Antti Karttunen, Jan 17 2009

Keywords

Comments

This permutation is induced by the first Lamplighter group generating wreath recursion a = s(a,b), b = (a,b) (i.e. binary transducer, where s means that the bits at that state are toggled: 0 <-> 1) given on page 104 of Bondarenko, Grigorchuk, et al. paper, starting from the active (swapping) state a and rewriting bits from the second most significant bit to the least significant end. It is the same automaton as given in figure 1 on page 211 of Grigorchuk and Zuk paper. Note that the fourth wreath recursion on page 104 of Bondarenko, et al. paper induces similarly the binary reflected Gray code A003188 (A054429-reflected conjugate of this permutation) and the second one induces Gray Code's inverse permutation A006068.

Examples

			312 = 100111000 in binary. Starting from the second most significant bit and, as we begin with the swapping state a, we complement the bits up to and including the first one encountered and so the beginning of the binary expansion is complemented as 1110....., then, as we switch to the inactive state b, the following bits are kept same, up to and including the first zero encountered, after which the binary expansion is 1110110.., after which we switch again to the complementing mode (state a) and we obtain 111011011, which is 475's binary representation, thus a(312)=475.
		

Crossrefs

Inverse: A154435.
Corresponds to A122302 in the group of Catalan bijections.

Programs

  • Mathematica
    Function[s, Map[s[[#]] &, BitXor[#, Floor[#/2]] & /@ s]]@ Flatten@ Table[Range[2^(n + 1) - 1, 2^n, -1], {n, 0, 6}] (* Michael De Vlieger, Jun 11 2017 *)
  • PARI
    a003188(n) = bitxor(n, n>>1);
    a054429(n) = 3<<#binary(n\2) - n - 1;
    a(n) = if(n==0, 0, a054429(a003188(a054429(n)))); \\ Indranil Ghosh, Jun 11 2017
    
  • Python
    from sympy import floor
    def a003188(n): return n^(n>>1)
    def a054429(n): return 1 if n==1 else 2*a054429(floor(n/2)) + 1 - n%2
    def a(n): return 0 if n==0 else a054429(a003188(a054429(n))) # Indranil Ghosh, Jun 11 2017
    
  • R
    maxn <- 63 # by choice
    a <- c(1, 3, 2)
    for(n in 2:maxn){
      if(n%%2 == 0) {a[2*n] <- 2*a[n]+1 ; a[2*n+1] <- 2*a[n]}
      else          {a[2*n] <- 2*a[n]   ; a[2*n+1] <- 2*a[n]+1}
    }
    (a <- c(0,a))
    # Yosu Yurramendi, Apr 10 2020

Formula

a(0) = 0, a(1) = 1, a(2) = 3, a(3) = 2,
if n > 3 and n even a(2*n) = 2*n + 1, a(2*n+1) = 2*a(n),
if n > 3 and n odd a(2*n) = 2*a(n) , a(2*n+1) = 2*a(n) + 1. - Yosu Yurramendi, Apr 10 2020

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A162909 Numerators of Bird tree fractions.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 3, 3, 3, 1, 2, 5, 4, 4, 5, 5, 4, 4, 5, 2, 1, 3, 3, 8, 7, 5, 7, 7, 5, 7, 8, 8, 7, 5, 7, 7, 5, 7, 8, 3, 3, 1, 2, 5, 4, 4, 5, 13, 11, 9, 12, 9, 6, 10, 11, 11, 10, 6, 9, 12, 9, 11, 13, 13, 11, 9, 12, 9, 6, 10, 11, 11, 10, 6, 9, 12, 9, 11, 13, 5, 4, 4, 5, 2, 1, 3, 3, 8, 7, 5, 7, 7, 5, 7, 8
Offset: 1

Views

Author

Ralf Hinze (ralf.hinze(AT)comlab.ox.ac.uk), Aug 05 2009

Keywords

Comments

The Bird tree is an infinite binary tree labeled with rational numbers. The root is labeled with 1. The tree enjoys the following fractal property: it can be transformed into its left subtree by first incrementing and then reciprocalizing the elements; for the right subtree interchange the order of the two steps: the elements are first reciprocalized and then incremented. Like the Stern-Brocot tree, the Bird tree enumerates all the positive rationals (A162909(n)/A162910(n)).
From Yosu Yurramendi, Jul 11 2014: (Start)
If the terms (n>0) are written as an array (left-aligned fashion) with rows of length 2^m, m = 0,1,2,3,...
1,
1,2,
2,1,3,3,
3,3,1,2,5,4,4,5,
5,4,4,5,2,1,3,3,8,7,5,7,7,5,7,8,
8,7,5,7,7,5,7,8,3,3,1,2,5,4,4,5,13,11,9,12,9,6,10,11,11,10,6,9,12,9,11,13,
then the sum of the m-th row is 3^m (m = 0,1,2,), each column k is a Fibonacci sequence.
If the rows are written in a right-aligned fashion:
1,
1, 2,
2,1, 3, 3,
3, 3,1,2, 5,4, 4, 5,
5, 4,4, 5,2,1, 3, 3, 8, 7,5,7, 7,5, 7, 8,
8,7,5,7,7,5,7,8,3,3,1,2,5,4,4,5,13,11,9,12,9,6,10,11,11,10,6,9,12,9,11,13,
then each column k also is a Fibonacci sequence.
The Fibonacci sequences of both triangles are equal except the first terms of first triangle.
If the sequence is considered by blocks of length 2^m, m = 0,1,2,..., the blocks of this sequence are the reverses of blocks of A162910 ( a(2^m+k) = A162910(2^(m+1)-1-k), m = 0,1,2,..., k = 0,1,2,...,2^m-1).
(End)

Examples

			The first four levels of the Bird tree: [1/1] [1/2, 2/1] [2/3, 1/3, 3/1, 3/2], [3/5, 3/4, 1/4, 2/5, 5/2, 4/1, 4/3, 5/3].
		

Crossrefs

This sequence is the composition of A162911 and A059893: a(n) = A162911(A059893(n)). This sequence is a permutation of A002487(n+1).

Programs

  • Haskell
    import Ratio
    bird :: [Rational]
    bird = branch (recip . succ) (succ . recip) 1
    branch f g a = a : branch f g (f a) \/ branch f g (g a)
    (a : as) \/ bs = a : (bs \/ as)
    a162909 = map numerator bird
    a162910 = map denominator bird
    
  • R
    blocklevel <- 6 # arbitrary
    a <- 1
    for(m in 1:blocklevel) for(k in 0:(2^(m-1)-1)){
    a[2^m+k]         = a[2^m-k-1]
    a[2^m+2^(m-1)+k] = a[2^m+k] + a[2^(m-1)+k]
    }
    a
    # Yosu Yurramendi, Jul 11 2014

Formula

a(2^m+k) = a(2^m-k-1), a(2^m+2^(m-1)+k) = a(2^m+k) + a(2^(m-1)+k), a(1) = 1, m=0,1,2,3,..., k=0,1,...,2^(m-1)-1. - Yosu Yurramendi, Jul 11 2014
a(A097072(n)*2^m+k) = A268087(2^m+k), m >= 0, 0 <= k < 2^m, n > 1. a(A000975(n)) = 1, n > 0. - Yosu Yurramendi, Feb 21 2017
a(n) = A002487(A258996(A059893(n))) = A002487(A059893(A258746(n))), n > 0. - Yosu Yurramendi, Jul 14 2021

A162910 Denominators of Bird tree fractions.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 2, 5, 4, 4, 5, 2, 1, 3, 3, 8, 7, 5, 7, 7, 5, 7, 8, 3, 3, 1, 2, 5, 4, 4, 5, 13, 11, 9, 12, 9, 6, 10, 11, 11, 10, 6, 9, 12, 9, 11, 13, 5, 4, 4, 5, 2, 1, 3, 3, 8, 7, 5, 7, 7, 5, 7, 8, 21, 18, 14, 19, 16, 11, 17, 19, 14, 13, 7, 11, 17, 13, 15, 18, 18, 15, 13, 17, 11, 7, 13, 14, 19
Offset: 1

Views

Author

Ralf Hinze (ralf.hinze(AT)comlab.ox.ac.uk), Aug 05 2009

Keywords

Comments

The Bird tree is an infinite binary tree labeled with rational numbers. The root is labeled with 1. The tree enjoys the following fractal property: it can be transformed into its left subtree by first incrementing and then reciprocalizing the elements; for the right subtree interchange the order of the two steps: the elements are first reciprocalized and then incremented. Like the Stern-Brocot tree, the Bird tree enumerates all the positive rationals (A162909(n)/A162910(n)).
From Yosu Yurramendi, Jul 11 2014: (Start)
If the terms (n>0) are written as an array (left-aligned fashion) with rows of length 2^m, m = 0,1,2,3,...
1,
2, 1,
3, 3,1, 2,
5, 4,4, 5,2,1, 3, 3,
8, 7,5, 7,7,5, 7, 8, 3, 3,1,2, 5,4, 4, 5,
13,11,9,12,9,6,10,11,11,10,6,9,12,9,11,13,5,4,4,5,2,1,3,3,8,7,5,7,7,5,7,8,
then the sum of the m-th row is 3^m (m = 0,1,2,), each column k is a Fibonacci sequence.
If the rows are written in a right-aligned fashion:
1,
2,1,
3,3,1,2,
5,4,4,5,2,1,3,3,
8,7,5,7,7,5,7,8,3,3,1,2,5,4,4,5,
13,11,9,12,9,6,10,11,11,10,6,9,12,9,11,13,5,4,4,5,2,1,3,3,8,7,5,7,7,5,7,8,
then each column k also is a Fibonacci sequence.
The Fibonacci sequences of both triangles are equal except the first terms of second triangle.
If the sequence is considered by blocks of length 2^m, m = 0,1,2,..., the blocks of this sequence are the reverses of blocks of A162909 ( a(2^m+k) = A162909(2^(m+1)-1-k), m = 0,1,2,..., k = 0,1,2,...,2^m-1).
(End)

Examples

			The first four levels of the Bird tree: [1/1] [1/2, 2/1] [2/3, 1/3, 3/1, 3/2], [3/5, 3/4, 1/4, 2/5, 5/2, 4/1, 4/3, 5/3].
		

Crossrefs

This sequence is the composition of A162912 and A059893: a(n) = A162912(A059893(n)). This sequence is a permutation of A002487(n+2).

Programs

  • Haskell
    import Ratio; bird :: [Rational]; bird = branch (recip . succ) (succ . recip) 1; branch f g a = a : branch f g (f a) \/ branch f g (g a); (a : as) \/ bs = a : (bs \/ as); a162909 = map numerator bird; a162910 = map denominator bird
    
  • R
    blocklevel <- 6 # arbitrary
    a <- 1
    for(m in 1:blocklevel) for(k in 0:(2^(m-1)-1)){
    a[2^m+k]         = a[2^m-k-1] + a[2^(m-1)+k]
    a[2^m+2^(m-1)+k] = a[2^m-k-1]
    }
    a
    # Yosu Yurramendi, Jul 11 2014

Formula

a(2^m+k) = a(2^m-k-1) + a(2^(m-1)+k), a(2^m+2^(m-1)+k) = a(2^m-k-1), a(1) = 1, m=0,1,2,3,..., k=0,1,...,2^(m-1)-1. - Yosu Yurramendi, Jul 11 2014
If k is odd a(A080675(n)*2^m+k) = A268087(2^m+k), if k is even a(A136412(2^m+k+1)*2^m+k) = A268087(2^m+k), m >= 0, 0 <= k < 2^m, n > 0. a(A081254(n)) = 1, n > 0. - Yosu Yurramendi, Feb 21 2017
a(n) = A002487(1+A258996(A059893(n))) = A002487(1+A059893(A258746(n))), n > 0. - Yosu Yurramendi, Jul 14 2021

A229742 a(n) = A071585(n) - A071766(n).

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 1, 2, 4, 5, 4, 5, 1, 2, 3, 3, 5, 7, 7, 8, 5, 7, 7, 8, 1, 2, 3, 3, 4, 5, 4, 5, 6, 9, 10, 11, 9, 12, 11, 13, 6, 9, 10, 11, 9, 12, 11, 13, 1, 2, 3, 3, 4, 5, 4, 5, 5, 7, 7, 8, 5, 7, 7, 8, 7, 11, 13, 14, 13, 17, 15, 18, 11, 16, 17, 19, 14
Offset: 0

Views

Author

N. J. A. Sloane, Oct 05 2013, at the suggestion of Kevin Ryde

Keywords

Comments

From Yosu Yurramendi, Jun 30 2014: (Start)
If the terms (n>0) are written as an array (left-aligned fashion):
1,
2,1,
3,3, 1, 2,
4,5, 4, 5,1, 2, 3, 3,
5,7, 7, 8,5, 7, 7, 8,1,2, 3, 3,4, 5, 4, 5,
6,9,10,11,9,12,11,13,6,9,10,11,9,12,11,13,1,2,3,3,4,5,4,5,5,7,7,8,5,7,7,8,
then the sum of the k-th row is 3^(k-1) and each column is an arithmetic sequence. The differences of the arithmetic sequences gives the sequence A071585 (a(2^(p+1)+k) - a(2^p+k) = A071585(k), p = 0,1,2,..., k = 0,1,2,...,2^p-1).
The first terms of each column give A071766. The second terms of each column give A086593. So, A086593(n) = A071585(n) + A071766(n).
If the rows (n>0) are written in a right-aligned fashion:
1,
2,1,
3,3,1,2,
4,5,4,5,1,2,3,3,
5,7,7,8,5,7,7,8,1,2,3,3,4,5,4,5,
6,9,10,11,9,12,11,13,6,9,10,11,9,12,11,13,1,2,3,3,4,5,4,5,5,7,7,8,5,7,7,8,
then each column is a Fibonacci sequence (a(2^(p+2)+k) = a(2^(p+1)+k) + a(2^p+k) p = 0,1,2,..., k = 0,1,2,...,2^p-1, with a_k(1) = A071585(k) and a_k(2) = A071766(k) being the first two terms of each column sequence). (End)

Examples

			A229742/A071766 = 0, 1, 2, 1/2, 3, 3/2, 1/3, 2/3, 4, 5/2, 4/3, 5/3, 1/4, 2/5, 3/4, 3/5, 5, 7/2, 7/3, 8/3, 5/4, 7/5, 7/4, 8/5, ... (this is the HCS form of the Stern-Brocot tree).
		

Crossrefs

Programs

  • R
    blocklevel <- 6 # arbitrary
    a <- 1
    for(m in 0:blocklevel) for(k in 0:(2^(m-1)-1)){
      a[2^(m+1)+k]             <- a[2^m+k] + a[2^m+2^(m-1)+k]
      a[2^(m+1)+2^(m-1)+k]     <- a[2^(m+1)+k]
      a[2^(m+1)+2^m+k]         <- a[2^m+2^(m-1)+k]
      a[2^(m+1)+2^m+2^(m-1)+k] <- a[2^m+k]
    }
    a
    # Yosu Yurramendi, Jul 11 2014

Formula

From Yosu Yurramendi, May 26 2019: (Start)
a(2^(m+1)+2^m+k) = A071585( k)
a(2^(m+1) +k) = A071585(2^m+k), m >= 0, 0 <= k < 2^m. (End)
a(n) = A002487(A059893(A006068(n))) = A002487(1+A059893(A233279(n))), n > 0. - Yosu Yurramendi, Sep 29 2021

A352514 Number of strong nonexcedances (parts below the diagonal) of the n-th composition in standard order.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 2, 3, 0, 1, 0, 2, 0, 1, 2, 3, 0, 1, 1, 2, 1, 3, 3, 4, 0, 1, 0, 2, 0, 1, 2, 3, 0, 1, 1, 2, 1, 3, 3, 4, 0, 1, 1, 2, 0, 2, 2, 3, 1, 2, 3, 4, 3, 4, 4, 5, 0, 1, 0, 2, 0, 1, 2, 3, 0, 1, 1, 2, 1, 3, 3, 4, 0, 1, 1, 2, 0, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Mar 22 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. See also A000120, A059893, A070939, A114994, A225620.

Examples

			The 83rd composition in standard order is (2,3,1,1), with strong nonexcedances {3,4}, so a(83) = 2.
		

Crossrefs

Positions of first appearances are A000225.
The weak version is A352515, counted by A352522 (first column A238874).
The opposite version is A352516, counted by A352524 (first column A008930).
The weak opposite version is A352517, counted by A352525 (first A177510).
The triangle A352521 counts these compositions (first column A219282).
A008292 is the triangle of Eulerian numbers (version without zeros).
A011782 counts compositions.
A173018 counts permutations by number of excedances, weak A123125.
A238349 counts comps by fixed parts, first col A238351, rank stat A352512.
A352490 is the (strong) nonexcedance set of A122111.
A352523 counts comps by unfixed parts, first col A010054, rank stat A352513.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    pa[y_]:=Length[Select[Range[Length[y]],#>y[[#]]&]];
    Table[pa[stc[n]],{n,0,30}]

A245326 Denominators of an enumeration system of the reduced nonnegative rational numbers.

Original entry on oeis.org

1, 2, 1, 3, 3, 2, 1, 5, 4, 5, 4, 3, 3, 2, 1, 8, 7, 7, 5, 8, 7, 7, 5, 5, 4, 5, 4, 3, 3, 2, 1, 13, 11, 12, 9, 11, 10, 9, 6, 13, 11, 12, 9, 11, 10, 9, 6, 8, 7, 7, 5, 8, 7, 7, 5, 5, 4, 5, 4, 3, 3, 2, 1, 21, 18, 19, 14, 19, 17, 16, 11, 18, 15, 17, 13, 14, 13, 11, 7, 21, 18, 19, 14, 19, 17, 16, 11, 18, 15, 17, 13, 14, 13, 11, 7, 13, 11, 12, 9, 11
Offset: 1

Views

Author

Yosu Yurramendi, Jul 18 2014

Keywords

Comments

A245325(n)/a(n) enumerates all the reduced nonnegative rational numbers exactly once.
If the terms (n>0) are written as an array (in a left-aligned fashion) with rows of length 2^m, m = 0,1,2,3,...
1,
2, 1,
3, 3, 2,1,
5, 4, 5,4, 3, 3,2,1,
8, 7, 7,5, 8, 7,7,5, 5, 4, 5,4, 3, 3,2,1,
13,11,12,9,11,10,9,6,13,11,12,9,11,10,9,6,8,7,7,5,8,7,7,5,5,4,5,4,3,3,2,1,
then the sum of the m-th row is 3^m (m = 0,1,2,), and each column k is a Fibonacci sequence. These Fibonacci sequences are equal to Fibonacci sequences from A...... except for the first terms of those sequences.
If the rows are written in a right-aligned fashion:
1,
2,1,
3,3,2,1,
5,4,5,4,3,3,2,1,
8,7,7,5,8,7,7,5,5,4,5,4,3,3,2,1,
13,11,12,9,11,10,9,6,13,11,12,9,11,10,9,6,8,7,7,5,8,7,7,5,5,4,5,4,3,3,2,1,
then each column is constant and the terms are from A071585 (a(2^m-1-k) = A071585(k), k = 0,1,2,...).
If the sequence is considered by blocks of length 2^m, m = 0,1,2,..., the blocks of this sequence are permutations of terms of blocks from A002487 (Stern's diatomic series or the Stern-Brocot sequence), and, more precisely, the reverses of blocks of A071766 (a(2^m+k) = A071766(2^(m+1)-1-k), m = 0,1,2,..., k = 0,1,2,...,2^m-1). Moreover, each block is the bit-reversed permutation of the corresponding block of A245328.

Crossrefs

Programs

  • PARI
    a(n) = my(A=1); for(i=0, logint(n, 2), if(bittest(2*n, i), A++, A=(A+1)/A)); denominator(A) \\ Mikhail Kurkov, Feb 20 2023
  • R
    blocklevel <- 6 # arbitrary
    a <- 1
    for(m in 0:blocklevel) for(k in 0:(2^(m-1)-1)){
      a[2^(m+1)+k]             <- a[2^m+k] + a[2^m+2^(m-1)+k]
      a[2^(m+1)+2^(m-1)+k]     <- a[2^(m+1)+k]
      a[2^(m+1)+2^m+k]         <- a[2^m+k]
      a[2^(m+1)+2^m+2^(m-1)+k] <- a[2^m+2^(m-1)+k]
    }
    a
    

Formula

a(n) = A002487(1+A059893(A180200(n))) = A002487(A059893(A154435(n))). - Yosu Yurramendi, Sep 20 2021
Previous Showing 51-60 of 113 results. Next