cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A273945 Odd prime factors of generalized Fermat numbers of the form 3^(2^m) + 1 with m >= 0.

Original entry on oeis.org

5, 17, 41, 193, 257, 12289, 59393, 65537, 275201, 786433, 790529, 8972801, 13631489, 21523361, 134382593, 155189249, 448524289, 524455937, 847036417, 3221225473, 12348030977, 22320686081, 77309411329, 206158430209, 4638564679681, 6597069766657, 12079910333441
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 05 2016

Keywords

Comments

Odd primes p such that the multiplicative order of 3 (mod p) is a power of 2.

Crossrefs

Cf. A023394, A059919, A072982, A268657, A268661, A273946 (base 5), A273947 (base 6), A273948 (base 7), A273949 (base 11), A273950 (base 12).

Programs

  • Mathematica
    Select[Prime@Range[2, 10^5], IntegerQ@Log[2, MultiplicativeOrder[3, #]] &]

A059918 a(n) = (3^(2^n)-1)/2.

Original entry on oeis.org

1, 4, 40, 3280, 21523360, 926510094425920, 1716841910146256242328924544640, 5895092288869291585760436430706259332839105796137920554548480
Offset: 0

Views

Author

Henry Bottomley, Feb 08 2001

Keywords

Comments

Denominator of b(n) where b(n) = 1/2*(b(n-1) + 1/b(n-1)), b(0)=2. - Vladeta Jovovic, Aug 15 2002

Crossrefs

Cf. A059917 (numerators).

Programs

  • Mathematica
    Array[(3^(2^#) - 1)/2 &, 8, 0] (* Michael De Vlieger, Feb 05 2022 *)
  • PARI
    { for (n=0, 11, write("b059918.txt", n, " ", (3^(2^n) - 1)/2); ) } \\ Harry J. Smith, Jun 30 2009

Formula

a(n) = a(n-1)*(3^(2^(n-1))+1) with a(0) = 1.
a(n) = (3^(2^n)-1)/2 = (A059723(n+1)-A059723(n))/A059723(n) = A059917(n)-1 = a(n-1)*A059919(n-1) = a(n-1)*(A011764(n-1)+1)
1 = Sum_{n>=0} 3^(2^n)/a(n+1). 1 = 3/4 + 9/40 + 81/3280 + 6561/21523360 + ...; with partial sums: 3/4, 39/40, 3279/3280, 21523359/21523360, ..., (a(n)-1)/a(n), ... . - Gary W. Adamson, Jun 22 2003
A136308(n) = A007089(a(n)). - Jason Kimberley, Dec 19 2012

A155877 Sums of three Fermat numbers.

Original entry on oeis.org

9, 11, 13, 15, 23, 25, 27, 37, 39, 51, 263, 265, 267, 277, 279, 291, 517, 519, 531, 771, 65543, 65545, 65547, 65557, 65559, 65571, 65797, 65799, 65811, 66051, 131077, 131079, 131091, 131331, 196611, 4294967303, 4294967305, 4294967307
Offset: 1

Views

Author

Jonathan Vos Post, Jan 29 2009

Keywords

Examples

			a(1) = 3 + 3 + 3 = 9.
a(2) = 3 + 3 + 5 = 11.
a(3) = 3 + 5 + 5 = 13.
a(4) = 5 + 5 + 5 = 15.
a(5) = 3 + 3 + 17 = 23.
a(6) = 3 + 5 + 17 = 25.
a(7) = 5 + 5 + 17 = 27.
a(8) = 3 + 17 + 17 = 37.
a(9) = 5 + 17 + 17 = 39.
a(10) = 17 + 17 + 17 = 51.
a(11) = 3 + 3 + 257 = 263.
		

Crossrefs

Formula

{(2^(2^a) + 1) + (2^(2^b) + 1) + (2^(2^c) + 1)} = {A000215(a) + A000215(b) + A000215(c)}.

Extensions

More terms from R. J. Mathar, Feb 06 2009

A275377 Number of odd prime factors (with multiplicity) of generalized Fermat number 3^(2^n) + 1.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 5, 4, 6
Offset: 0

Views

Author

Arkadiusz Wesolowski, Jul 25 2016

Keywords

Examples

			b(n) = (3^(2^n) + 1)/2.
Complete Factorizations
b(0) = 2
b(1) = 5
b(2) = 41
b(3) = 17*193
b(4) = 21523361
b(5) = 926510094425921
b(6) = 1716841910146256242328924544641
b(7) = 257*275201*138424618868737*3913786281514524929*P21
b(8) = 12289*8972801*891206124520373602817*P90
b(9) = 134382593*22320686081*12079910333441*100512627347897906177*P93*P101
		

Crossrefs

Programs

  • PARI
    a001222(n) = bigomega(n)
    a059919(n) = 3^(2^n)+1
    a(n) = if(n==0, 0, a001222(a059919(n))-1) \\ Felix Fröhlich, Jul 25 2016

Formula

a(n) = A001222(A059919(n)) - 1 for n > 0. - Felix Fröhlich, Jul 25 2016

Extensions

a(9) was found in 2008 by Tom Womack

A152582 Numbers of the form 9^(2^n) + 2.

Original entry on oeis.org

11, 83, 6563, 43046723, 1853020188851843, 3433683820292512484657849089283, 11790184577738583171520872861412518665678211592275841109096963
Offset: 1

Views

Author

Cino Hilliard, Dec 08 2008

Keywords

Comments

Except for the first term, this sequence is the same as A057727. There appears to be no divisibility rule for this sequence.

Crossrefs

Cf. A059919 (-1), A011764 (-2).

Programs

  • PARI
    g(a,n) = if(a%2,b=2,b=1);for(x=0,n,y=a^(2^x)+b;print1(y","))
Previous Showing 11-15 of 15 results.