A060483
Number of 5-block tricoverings of an n-set.
Original entry on oeis.org
3, 57, 717, 7845, 81333, 825237, 8300757, 83202645, 832809813, 8331237717, 83324947797, 833299785045, 8333199127893, 83332796486997, 833331185898837, 8333324743497045, 83333298973791573, 833333195894773077, 8333332783578305877, 83333331134311650645
Offset: 3
Cf.
A006095,
A060484,
A060485,
A060486,
A060090-
A060095,
A060069,
A060070,
A060051-
A060053,
A002718,
A059443,
A003462,
A059945-
A059951.
A060491
Number of ordered tricoverings of an unlabeled n-set.
Original entry on oeis.org
1, 0, 0, 184, 17488, 2780752, 689187720, 236477490418, 107317805999204, 62318195302890305, 45081693413563797127, 39762626850034005271588, 42009504510315968282400843, 52381340312720286113688037624, 76118747309505733406576769607755
Offset: 0
There are 184 ordered tricoverings of an unlabeled 3-set: 4 4-block, 60 5-block and 120 6-block tricoverings (cf. A060492).
Cf.
A060486,
A060487,
A060090,
A060092,
A060069,
A060070,
A060051,
A060052,
A060053,
A002718,
A059443.
-
seq(n)={my(m=2*n\2, y='y + O('y^(n+1))); Vec(subst(Pol(serlaplace(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 3)*exp((-x^2/2)/(1-y)^k + O(x*x^m))*x^k/k!))), x, 1))} \\ Andrew Howroyd, Jan 30 2020
A060484
Number of 6-block tricoverings of an n-set.
Original entry on oeis.org
1, 95, 3107, 75835, 1653771, 34384875, 700030507, 14116715435, 283432939691, 5679127043755, 113683003777707, 2274630646577835, 45502044971338411, 910133025632152235, 18203564201836161707, 364080180268471397035
Offset: 3
Cf.
A006095,
A060483,
A060485,
A060486,
A060090-
A060095,
A060069,
A060070,
A060051-
A060053,
A002718,
A059443,
A003462,
A059945-
A059951.
-
With[{c=1/6!},Table[c(20^n-6*10^n-15*8^n+135*4^n-310*2^n+240),{n,3,20}]] (* or *) LinearRecurrence[{45,-720,5220,-17664,25920,-12800},{1,95,3107,75835,1653771,34384875},20] (* Harvey P. Dale, Jan 05 2017 *)
-
a(n) = (1/6!)*(20^n - 6*10^n - 15*8^n + 135*4^n - 310*2^n + 240) \\ Andrew Howroyd, Dec 15 2018
A060485
Number of 7-block tricoverings of an n-set.
Original entry on oeis.org
43, 4520, 244035, 10418070, 401861943, 14778678180, 530817413155, 18837147108890, 664260814445943, 23345018969140440, 818942064306004275, 28699514624047140510, 1005201938765467579543, 35196266296400319440300
Offset: 4
- Andrew Howroyd, Table of n, a(n) for n = 4..200
- Index entries for linear recurrences with constant coefficients, signature (110, -4991, 124120, -1887459, 18470550, -118758569, 501056740, -1355000500, 2223560000, -1973160000, 705600000).
Cf.
A006095,
A060483,
A060484,
A060486,
A060090-
A060095,
A060069,
A060070,
A060051-
A060053,
A002718,
A059443,
A003462,
A059945-
A059951.
A093377
Number of labeled n-vertex graphs without 2-components and without isolated vertices (1-components).
Original entry on oeis.org
1, 0, 0, 4, 38, 728, 26864, 1871576, 251762204, 66308767200, 34497665550400, 35641856042561008, 73354660691960203016, 301272244237002052739424, 2471648864359822034978330304, 40527681073171940835893232576032
Offset: 0
-
nn=20;g=Sum[2^Binomial[n,2]x^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[Exp[ Log[g]-x-x^2/2!],{x,0,nn}],x] (* Geoffrey Critzer, Apr 15 2013 *)
-
N=66; x='x+O('x^N);
egf=exp(-x-x^2/2)*sum(i=0,N, 2^binomial(i, 2)*x^i/i!);
Vec(serlaplace(egf))
/* Joerg Arndt, Jul 06 2011 */
Comments