cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A060483 Number of 5-block tricoverings of an n-set.

Original entry on oeis.org

3, 57, 717, 7845, 81333, 825237, 8300757, 83202645, 832809813, 8331237717, 83324947797, 833299785045, 8333199127893, 83332796486997, 833331185898837, 8333324743497045, 83333298973791573, 833333195894773077, 8333332783578305877, 83333331134311650645
Offset: 3

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Crossrefs

Programs

Formula

a(n) = (1/5!)*(10^n - 15*4^n + 45*2^n - 40).
Generally, e.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..inf}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).
G.f.: 3*x^3*(2*x+1) / ((x-1)*(2*x-1)*(4*x-1)*(10*x-1)). - Colin Barker, Jan 11 2013

Extensions

More terms from Colin Barker, Jan 11 2013

A060491 Number of ordered tricoverings of an unlabeled n-set.

Original entry on oeis.org

1, 0, 0, 184, 17488, 2780752, 689187720, 236477490418, 107317805999204, 62318195302890305, 45081693413563797127, 39762626850034005271588, 42009504510315968282400843, 52381340312720286113688037624, 76118747309505733406576769607755
Offset: 0

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Examples

			There are 184 ordered tricoverings of an unlabeled 3-set: 4 4-block, 60 5-block and 120 6-block tricoverings (cf. A060492).
		

Crossrefs

Programs

  • PARI
    seq(n)={my(m=2*n\2, y='y + O('y^(n+1))); Vec(subst(Pol(serlaplace(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 3)*exp((-x^2/2)/(1-y)^k + O(x*x^m))*x^k/k!))), x, 1))} \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f. for ordered k-block tricoverings of an unlabeled n-set is exp(-x+x^2/2+x^3/3*y/(1-y))*Sum_{k=0..inf}1/(1-y)^binomial(k, 3)*exp(-x^2/2*1/(1-y)^n)*x^k/k!.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 30 2020

A060484 Number of 6-block tricoverings of an n-set.

Original entry on oeis.org

1, 95, 3107, 75835, 1653771, 34384875, 700030507, 14116715435, 283432939691, 5679127043755, 113683003777707, 2274630646577835, 45502044971338411, 910133025632152235, 18203564201836161707, 364080180268471397035
Offset: 3

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Crossrefs

Programs

  • Mathematica
    With[{c=1/6!},Table[c(20^n-6*10^n-15*8^n+135*4^n-310*2^n+240),{n,3,20}]] (* or *) LinearRecurrence[{45,-720,5220,-17664,25920,-12800},{1,95,3107,75835,1653771,34384875},20] (* Harvey P. Dale, Jan 05 2017 *)
  • PARI
    a(n) = (1/6!)*(20^n - 6*10^n - 15*8^n + 135*4^n - 310*2^n + 240) \\ Andrew Howroyd, Dec 15 2018

Formula

a(n) = (1/6!)*(20^n - 6*10^n - 15*8^n + 135*4^n - 310*2^n + 240).
E.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..inf}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).
G.f.: -x^3*(800*x^3+448*x^2-50*x-1) / ((x-1)*(2*x-1)*(4*x-1)*(8*x-1)*(10*x-1)*(20*x-1)). - Colin Barker, Jan 12 2013
a(n) = 45*a(n-1)-720*a(n-2)+5220*a(n-3)-17664*a(n-4)+25920*a(n-5)-12800*a(n-6). - Wesley Ivan Hurt, Oct 18 2021

A060485 Number of 7-block tricoverings of an n-set.

Original entry on oeis.org

43, 4520, 244035, 10418070, 401861943, 14778678180, 530817413155, 18837147108890, 664260814445943, 23345018969140440, 818942064306004275, 28699514624047140510, 1005201938765467579543, 35196266296400319440300
Offset: 4

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Crossrefs

Formula

a(n) = (1/7!)*(35^n - 7*20^n - 21*15^n + 42*10^n + 105*8^n + 105*7^n + 70*5^n - 945*4^n - 525*3^n + 2450*2^n - 1470).
E.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..infinity}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).
G.f.: x^4*(27300000*x^7 +9288000*x^6 -17908650*x^5 +6008735*x^4 -796380*x^3 +38552*x^2 +210*x -43) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(7*x -1)*(8*x -1)*(10*x -1)*(15*x -1)*(20*x -1)*(35*x -1)). - Colin Barker, Jan 12 2013

A093377 Number of labeled n-vertex graphs without 2-components and without isolated vertices (1-components).

Original entry on oeis.org

1, 0, 0, 4, 38, 728, 26864, 1871576, 251762204, 66308767200, 34497665550400, 35641856042561008, 73354660691960203016, 301272244237002052739424, 2471648864359822034978330304, 40527681073171940835893232576032
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 28 2004

Keywords

Comments

Also number of unlabeled n-block ordered r-bicoverings, cf. A060053. - Vladeta Jovovic, May 13 2004

Crossrefs

Programs

  • Mathematica
    nn=20;g=Sum[2^Binomial[n,2]x^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[Exp[ Log[g]-x-x^2/2!],{x,0,nn}],x]  (* Geoffrey Critzer, Apr 15 2013 *)
  • PARI
    N=66; x='x+O('x^N);
    egf=exp(-x-x^2/2)*sum(i=0,N, 2^binomial(i, 2)*x^i/i!);
    Vec(serlaplace(egf))
    /* Joerg Arndt, Jul 06 2011 */

Formula

E.g.f.: exp(-x-x^2/2)*Sum_{n>=0} 2^binomial(n, 2)*x^n/n!.
Inverse binomial transform of A093352().
Previous Showing 11-15 of 15 results.