cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A093436 Decimal expansion of exp(Pi*sqrt(67)).

Original entry on oeis.org

1, 4, 7, 1, 9, 7, 9, 5, 2, 7, 4, 3, 9, 9, 9, 9, 9, 8, 6, 6, 2, 4, 5, 4, 2, 2, 4, 5, 0, 6, 8, 2, 9, 2, 6, 1, 3, 1, 2, 5, 7, 8, 6, 2, 8, 5, 0, 8, 1, 8, 3, 3, 1, 2, 5, 0, 3, 8, 1, 6, 7, 1, 2, 6, 3, 3, 3, 7, 1, 2, 8, 2, 1, 0, 5, 1, 2, 2, 9, 5, 0, 9, 9, 8, 8, 3, 1, 5, 2, 3, 5, 0, 2, 0, 4, 1, 3, 7, 9, 2, 4, 2, 3, 5, 3
Offset: 12

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), May 13 2004

Keywords

Examples

			147197952743.99999866245422450682926131257862850818331250381671263337...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 225-226.

Crossrefs

Cf. A060295.

Programs

  • Magma
    R:= RealField(); Exp(Pi(R)*Sqrt(67)); // G. C. Greubel, Feb 13 2018
  • Mathematica
    RealDigits[E^(Pi*Sqrt[67]), 10, 111][[1]] (* Robert G. Wilson v, May 24 2004 *)
  • PARI
    exp(Pi*sqrt(67))
    

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com) and Robert G. Wilson v, May 23 2004

A190575 Decimal expansion of exp(Pi*sqrt(163)/3).

Original entry on oeis.org

6, 4, 0, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 4, 8, 6, 3, 7, 3, 5, 0, 4, 9, 0, 1, 6, 0, 3, 9, 4, 7, 1, 7, 4, 1, 8, 1, 8, 8, 1, 8, 5, 3, 9, 4, 7, 5, 7, 7, 1, 4, 8, 5, 7, 6, 0, 3, 6, 6, 5, 9, 1, 8, 1, 9, 4, 6, 5, 2, 2, 1, 8, 2, 5, 8, 2, 8, 6, 9, 4, 2, 5, 3, 6, 3, 4, 0, 8, 1, 5, 8, 2, 2, 6, 4
Offset: 6

Views

Author

N. J. A. Sloane, May 12 2011

Keywords

Examples

			640320.00000000060486373504901603947174181881853947577148576...
		

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 128.

Crossrefs

Cf. A190574.

Programs

  • Mathematica
    RealDigits[Exp[(Pi Sqrt[163])/3],10,120][[1]] (* Harvey P. Dale, Jan 21 2019 *)
  • PARI
    default(realprecision,1000);
    first(n)=digits(floor(10^(n-6)*exp(Pi*sqrt(163)/3))) \\ Edward Jiang, Sep 07 2014

Formula

Equals cube root of A060295. - Michel Marcus, Sep 08 2014

A212131 Decimal expansion of k such that e^(k*sqrt(163)) = round(e^(Pi*sqrt(163))).

Original entry on oeis.org

3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 7, 2, 6, 6, 1, 9, 3, 4, 7, 5, 4, 9, 8, 8, 0, 8, 8, 3, 5, 2, 2, 4, 2, 2, 2, 9, 2, 9, 6, 2, 8, 7, 7, 4, 4, 2, 2, 5, 8, 7, 3, 9, 0, 5, 1, 0, 4, 9, 3, 7, 8, 7, 5, 5, 1, 0, 7, 4, 4, 5, 7, 7, 6, 7, 2, 0, 2, 4, 1, 5, 7, 9, 6, 7
Offset: 1

Views

Author

Omar E. Pol, Jun 25 2012

Keywords

Comments

Decimal expansion of log(262537412640768744)/sqrt(163).
First differs from A000796 at a(32).
Note that 262537412640768744 = 24*10939058860032031 = 2^3 * 3 * 10939058860032031, is the nearest integer to the value of Ramanujan's constant e^(Pi*sqrt(163)) = 262537412640768743.999999999999250... = A060295.

Examples

			3.14159265358979323846264338327972661934754988... (very close to Pi).
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[Round[E^(Pi Sqrt[163])]]/Sqrt[163], 10, 105][[1]] (* Bruno Berselli, Jun 26 2012 *)

Formula

k = log(round(e^(Pi*sqrt(163))))/sqrt(163).

Extensions

More terms from Alois P. Heinz, Jun 25 2012

A100378 Decimal expansion of exp(Pi*sqrt(89/3)).

Original entry on oeis.org

2, 7, 0, 0, 0, 0, 4, 1, 9, 9, 9, 9, 7, 1, 0, 0, 0, 0, 5, 7, 0, 0, 6, 7, 1, 7, 0, 5, 9, 9, 8, 9, 9, 7, 0, 6, 6, 9, 9, 0, 6, 2, 7, 2, 7, 0, 3, 2, 0, 8, 2, 1, 2, 1, 3, 9, 9, 6, 8, 7, 3, 1, 4, 5, 0, 3, 7, 0, 8, 1, 9, 3, 5, 2, 0, 4, 1, 3, 5, 5, 8, 4, 0, 9, 7, 6, 4, 6, 0, 4, 3, 0, 2, 0, 5, 6, 1, 3, 8, 7, 7, 5, 2, 6, 6
Offset: 8

Views

Author

Gerald McGarvey, Dec 29 2004

Keywords

Comments

Let q = this constant, then q = 300^3 + Sum_{k=0...infinity} (-1)^i*A030197(i)/q^i where A030197 is the McKay-Thompson series of class 3A for Monster, expansion of Hauptmodul for X_0^{+}(3) and expansion of (h+27)^2/h, where h = (eta(q)/eta(q^3))^12.

Examples

			27000041.999971000057006717059989970669906272703208212...
		

Crossrefs

Programs

  • Magma
    R:= RealField(); Exp(Pi(R)*Sqrt(89/3)); // G. C. Greubel, Feb 14 2018
  • Mathematica
    RealDigits[Exp[Pi*Sqrt[89/3]], 10, 100][[1]] (* G. C. Greubel, Feb 14 2018 *)
  • PARI
    exp(Pi*sqrt(89/3)) \\ G. C. Greubel, Feb 14 2018
    

A100379 Decimal expansion of exp(Pi*sqrt(29/2)).

Original entry on oeis.org

1, 5, 6, 8, 1, 5, 9, 9, 9, 6, 6, 8, 4, 0, 1, 1, 8, 2, 6, 3, 5, 2, 3, 9, 5, 9, 8, 6, 1, 1, 9, 6, 7, 1, 0, 8, 0, 9, 0, 9, 5, 3, 5, 1, 2, 3, 2, 8, 4, 4, 2, 0, 2, 6, 3, 0, 2, 3, 0, 9, 5, 0, 1, 4, 2, 9, 7, 0, 4, 5, 9, 3, 2, 3, 9, 7, 3, 7, 9, 6, 8, 4, 5, 7, 4, 0, 7, 3, 2, 1, 3, 4, 9, 7, 3, 8, 0, 9, 5, 5, 1, 4, 5, 1, 1
Offset: 6

Views

Author

Gerald McGarvey, Dec 29 2004

Keywords

Comments

Let q = this constant, then q = 396^2 - Sum_{k>=0} A007247(k)/q^(2*k - 1) where A007247 is the McKay-Thompson series of class 4B for Monster.

Examples

			156815.99966840118263523959861196710809095351232844202...
		

Crossrefs

Cf. A060295.

Programs

  • Magma
    R:= RealField(); Exp(Pi(R)*Sqrt(29/2)); // G. C. Greubel, Feb 14 2018
  • Mathematica
    RealDigits[Exp[Pi Sqrt[29/2]],10,120][[1]] (* Harvey P. Dale, Jul 19 2011 *)
  • PARI
    exp(Pi*sqrt(29/2)) \\ G. C. Greubel, Feb 14 2018
    

A100811 Decimal expansion of exp(Pi*sqrt(29/8)).

Original entry on oeis.org

3, 9, 5, 9, 9, 9, 9, 9, 9, 5, 8, 1, 3, 1, 4, 6, 2, 4, 3, 1, 8, 1, 0, 8, 7, 8, 1, 3, 1, 5, 7, 5, 8, 4, 8, 6, 6, 3, 8, 8, 1, 3, 8, 2, 4, 4, 7, 6, 4, 7, 7, 8, 4, 7, 5, 2, 8, 1, 7, 5, 0, 4, 4, 2, 6, 8, 8, 8, 7, 9, 2, 9, 5, 8, 6, 1, 3, 4, 8, 6, 5, 4, 6, 2, 5, 5, 4, 4, 6, 3, 2, 2, 1, 9, 7, 9, 3, 7, 7, 8, 9, 0, 9, 7, 1
Offset: 3

Views

Author

Gerald McGarvey, Jan 05 2005

Keywords

Comments

Let q = this constant, then q = 396 - Sum_{k>=1} A052241(k)/q^(4k-1) where A052241 is the McKay-Thompson series of class 8C for Monster.

Examples

			395.9999995813146243181087813157584866388138244764778475...
		

Crossrefs

Programs

  • Magma
    R:= RealField(); Exp(Pi(R)*Sqrt(29/8)); // G. C. Greubel, Feb 13 2018
  • Mathematica
    RealDigits[Exp[Pi Sqrt[29/8]],10,120][[1]] (* Harvey P. Dale, Feb 08 2015 *)
  • PARI
    exp(Pi*sqrt(29/8)) \\ G. C. Greubel, Feb 13 2018
    

A210963 Decimal expansion of sqrt(163).

Original entry on oeis.org

1, 2, 7, 6, 7, 1, 4, 5, 3, 3, 4, 8, 0, 3, 7, 0, 4, 6, 6, 1, 7, 1, 0, 9, 5, 2, 0, 0, 9, 7, 8, 0, 8, 9, 2, 3, 4, 7, 3, 8, 2, 3, 6, 3, 7, 8, 0, 3, 0, 1, 2, 5, 8, 8, 5, 1, 2, 1, 2, 6, 0, 2, 9, 8, 3, 8, 4, 8, 7, 2, 6, 1, 7, 2, 8, 9, 0, 2, 3, 9, 2, 5, 9, 5, 5, 9, 4, 2, 3, 4, 8, 3, 8, 6, 7, 5, 3, 1, 8, 7, 2, 4, 2, 2, 8
Offset: 2

Views

Author

Omar E. Pol, Jun 26 2012

Keywords

Comments

Also decimal expansion of log(R_c)/Pi, where R_c is Ramanujan's constant: 262537412640768743.999999999999250... = A060295.

Examples

			163^(1/2) = 12.76714533480370466171095200978...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[163], 10, 105][[1]] (* T. D. Noe, Jun 27 2012 *)
  • PARI
    sqrt(163) \\ Michel Marcus, Mar 26 2017

A210965 Decimal expansion of k such that e^(Pi*k) = round(e^(Pi*sqrt(163))).

Original entry on oeis.org

1, 2, 7, 6, 7, 1, 4, 5, 3, 3, 4, 8, 0, 3, 7, 0, 4, 6, 6, 1, 7, 1, 0, 9, 5, 2, 0, 0, 9, 7, 8, 1, 8, 0, 1, 5, 8, 6, 5, 7, 9, 2, 8, 7, 6, 0, 4, 6, 1, 5, 9, 5, 5, 2, 0, 0, 7, 4, 9, 7, 6, 0, 0, 8, 4, 7, 4, 0, 0, 6, 2, 4, 9, 2, 6, 1, 2, 2, 8, 5, 1, 6, 7, 1, 4, 1, 3, 8, 9, 1
Offset: 2

Views

Author

Omar E. Pol, Jun 26 2012

Keywords

Comments

Decimal expansion of k = log(262537412640768744)/Pi.
Note that 262537412640768744 = 24*10939058860032031 = 2^3 * 3 * 10939058860032031, is the nearest integer to the value of Ramanujan's constant e^(Pi*sqrt(163)) = A060295.
By construction, this constant here is very close to sqrt(163) = A210963.

Examples

			12.767145334803704661710952...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[262537412640768744]/Pi,10,120][[1]] (* Harvey P. Dale, Nov 12 2017 *)

Formula

Equals log(round(e^(Pi*sqrt(163))))/Pi.

A226120 Decimal expansion of Sum_{n>=1} n^3/(exp(2*Pi*n/7)-1).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 9, 0, 1, 6, 1, 7, 6, 7, 8, 8, 8, 6, 6, 2, 6, 7, 5, 5, 8, 4, 3, 5, 9, 3, 0, 5, 8, 5, 5, 4, 4, 5, 3, 3, 3, 4, 8, 0, 2, 5, 4, 8, 9, 7, 8, 4, 3, 4, 0, 6, 1, 0, 9, 9, 4, 3, 8, 7, 3, 7, 8, 5, 0, 6, 7, 1, 4, 8, 0, 1, 7, 9, 1, 6, 2, 7, 1, 3, 6, 6, 2, 1
Offset: 2

Views

Author

Jean-François Alcover, May 27 2013

Keywords

Comments

An almost-integer discovered by Simon Plouffe. The computed sum equals 10 within 15 digits.

Examples

			10.00000000000000019016176788866267558435930585544533348025489784340610994387...
		

Crossrefs

Cf. A060295 (famous almost-integer: Ramanujan's constant), A226121 (another surprising almost-integer by Simon Plouffe), A007775, A089034.

Programs

  • Mathematica
    NSum[n^3/(Exp[2*Pi*n/7] - 1), {n, 1, Infinity}, NSumTerms -> 220,    WorkingPrecision -> 100] // RealDigits[#, 10, 100] & // First

Extensions

Offset corrected by Rick L. Shepherd, Jan 01 2014

A226121 Decimal expansion of sum_{n=1..infinity} n^3/(exp(2*Pi*n/13)-1).

Original entry on oeis.org

1, 1, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 5, 9, 3, 7, 4, 5, 8, 5, 1, 0, 2, 5, 5, 4, 7, 3, 3, 5, 5, 8, 8, 5, 8, 4, 9, 1, 3, 3, 9, 7, 3, 8, 4, 1, 5, 0, 4, 3, 3, 9, 1, 5, 8, 0, 5, 4, 1, 2, 7, 9, 3, 5, 1, 5, 8, 7, 8, 5, 1, 6, 5, 4, 2, 3, 2
Offset: 3

Views

Author

Jean-François Alcover, May 27 2013

Keywords

Comments

An almost-integer discovered by Simon Plouffe. The computed sum equals 119 within 31 digits after the decimal point.

Examples

			119.0000000000000000000000000000000959374585102554733558858491339738415043391...
		

Crossrefs

Cf. A060295 (a famous almost-integer: Ramanujan's constant), A226120 (another surprising almost-integer by Simon Plouffe).

Programs

  • Mathematica
    NSum[n^3/(Exp[2*Pi*n/13] - 1), {n, 1, Infinity}, NSumTerms -> 500,    WorkingPrecision -> 100] // RealDigits[#, 10, 100] & // First

Extensions

Offset corrected by Rick L. Shepherd, Jan 01 2014
Previous Showing 11-20 of 26 results. Next