A061046
Denominator of 1/36 - 1/n^2.
Original entry on oeis.org
36, 9, 12, 144, 900, 1, 1764, 576, 324, 225, 4356, 48, 6084, 441, 300, 2304, 10404, 81, 12996, 3600, 196, 1089, 19044, 192, 22500, 1521, 2916, 7056, 30276, 75, 34596, 9216, 484, 2601, 44100, 1296, 49284, 3249, 2028, 14400, 60516, 147, 66564, 17424, 8100, 4761, 79524, 256, 86436, 5625, 3468, 24336, 101124, 729, 108900, 28224, 4332, 7569, 125316, 400, 133956, 8649, 15876, 36864, 152100, 363, 161604, 41616, 6348, 11025, 181476, 5184
Offset: 1
-
import Data.Ratio ((%), denominator)
a061046 = denominator . (1 % 36 -) . recip . (^ 2) . fromIntegral
-- Reinhard Zumkeller, Jan 06 2014
-
Denominator[1/36-1/Range[80]^2] (* Harvey P. Dale, Feb 06 2012 *)
-
for(n=6,50, print1(denominator(1/6^2 - 1/n^2), ", ")) \\ G. C. Greubel, Jul 07 2017
A061048
Denominator of 1/49 - 1/n^2.
Original entry on oeis.org
1, 3136, 3969, 4900, 5929, 7056, 8281, 196, 11025, 12544, 14161, 15876, 17689, 19600, 441, 23716, 25921, 28224, 30625, 33124, 35721, 784, 41209, 44100, 47089, 50176, 53361, 56644, 1225, 63504, 67081, 70756, 74529, 78400, 82369
Offset: 7
-
Table[Denominator[1/7^2 - 1/n^2], {n, 7, 50}] (* G. C. Greubel, Jul 07 2017 *)
-
for(n=7,50, print1(denominator(1/7^2 - 1/n^2), ", ")) \\ G. C. Greubel, Jul 07 2017
A165441
Table T(k,n) read by antidiagonals: denominator of 1/min(n,k)^2 -1/max(n,k)^2.
Original entry on oeis.org
1, 4, 4, 9, 1, 9, 16, 36, 36, 16, 25, 16, 1, 16, 25, 36, 100, 144, 144, 100, 36, 49, 9, 225, 1, 225, 9, 49, 64, 196, 12, 400, 400, 12, 196, 64, 81, 64, 441, 144, 1, 144, 441, 64, 81, 100, 324, 576, 784, 900, 900, 784, 576, 324, 100, 121, 25, 81, 64, 1225, 1, 1225, 64, 81, 25, 121
Offset: 1
.1, 4, 9, 16, 25, 36, 49, 64, 81, ... A000290
.4, 1, 36, 16, 100, 9, 196, 64, 324, ... A061038
.9, 36, 1, 144, 225, 12, 441, 576, 81, ... A061040
16, 16, 144, 1, 400, 144, 784, 64, 1296, ... A061042
25, 100, 225, 400, 1, 900, 1225, 1600, 2025, ... A061044
36, 9, 12, 144, 900, 1, 1764, 576, 324, ... A061046
49, 196, 441, 784, 1225, 1764, 1, 3136, 3969, ... A061048
64, 64, 576, 64, 1600, 576, 3136, 1, 5184, ... A061050
81, 324, 81, 1296, 2025, 324, 3969, 5184, 1, ...
-
T:= (k,n)-> denom(1/min (n,k)^2 -1/max (n, k)^2):
seq(seq(T(k, d-k), k=1..d-1), d=2..12);
-
T[n_, k_] := Denominator[1/Min[n, k]^2 - 1/Max[n, k]^2];
Table[T[n-k, k], {n, 2, 12}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Feb 04 2020 *)
A061036
Triangle T(m,n) = denominator of 1/m^2 - 1/n^2, n >= 1, m=n,n-1,n-2,...,1.
Original entry on oeis.org
1, 1, 4, 1, 36, 9, 1, 144, 16, 16, 1, 400, 225, 100, 25, 1, 900, 144, 12, 9, 36, 1, 1764, 1225, 784, 441, 196, 49, 1, 3136, 576, 1600, 64, 576, 64, 64, 1, 5184, 3969, 324, 2025, 1296, 81, 324, 81, 1, 8100, 1600, 4900, 225, 100, 400, 900, 25, 100, 1, 12100, 9801
Offset: 1
Triangle 1/m^2-1/n^2, m >= 1, 1<=n<=m, (i.e. with rows reversed) begins
0
3/4, 0
8/9, 5/36, 0
15/16, 3/16, 7/144, 0
24/25, 21/100, 16/225, 9/400, 0
35/36, 2/9, 1/12, 5/144, 11/900, 0
- J. E. Brady and G. E. Humiston, General Chemistry, 3rd. ed., Wiley; p. 77.
-
import Data.Ratio ((%), denominator)
a061036 n k = a061036_tabl !! (n-1) !! (k-1)
a061036_row = map denominator . balmer where
balmer n = map (subtract (1 % n ^ 2) . (1 %) . (^ 2)) [n, n-1 .. 1]
a061036_tabl = map a061036_row [1..]
-- Reinhard Zumkeller, Apr 12 2012
-
t[m_, n_] := Denominator[1/m^2 - 1/n^2]; Table[t[m, n], {n, 1, 12}, {m, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 17 2012 *)
A165727
Table T(k,n) read by antidiagonals: denominator of 1/min(n,k)^2 -1/max(n,k)^2 with T(0,n) = T(k,0) = 0.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 4, 4, 0, 0, 9, 1, 9, 0, 0, 16, 36, 36, 16, 0, 0, 25, 16, 1, 16, 25, 0, 0, 36, 100, 144, 144, 100, 36, 0, 0, 49, 9, 225, 1, 225, 9, 49, 0, 0, 64, 196, 12, 400, 400, 12, 196, 64, 0, 0, 81, 64, 441, 144, 1, 144, 441, 64, 81, 0, 0, 100, 324, 576, 784, 900, 900, 784, 576, 324, 100, 0
Offset: 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... A000004
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, ... A000290
0, 4, 1, 36, 16, 100, 9, 196, 64, 324, ... A061038
0, 9, 36, 1, 144, 225, 12, 441, 576, 81, ... A061040
0, 16, 16, 144, 1, 400, 144, 784, 64, 1296, ... A061042
0, 25, 100, 225, 400, 1, 900, 1225, 1600, 2025, ... A061044
0, 36, 9, 12, 144, 900, 1, 1764, 576, 324, ... A061046
0, 49, 196, 441, 784, 1225, 1764, 1, 3136, 3969, ... A061048
0, 64, 64, 576, 64, 1600, 576, 3136, 1, 5184, ... A061050
0, 81, 324, 81, 1296, 2025, 324, 3969, 5184, 1, ...
Cf.
A165441 (top row and left column removed)
-
T:= (k,n)-> `if` (n=0 or k=0, 0, denom (1/min (n,k)^2 -1/max (n, k)^2)):
seq (seq (T (k, d-k), k=0..d), d=0..11);
A152018
Denominator of 1/n^2-1/(3n)^2 or of 8/(9n^2).
Original entry on oeis.org
9, 9, 81, 18, 225, 81, 441, 72, 729, 225, 1089, 162, 1521, 441, 2025, 288, 2601, 729, 3249, 450, 3969, 1089, 4761, 648, 5625, 1521, 6561, 882, 7569, 2025, 8649, 1152, 9801, 2601, 11025, 1458, 12321, 3249, 13689, 1800, 15129, 3969, 16641, 2178, 18225
Offset: 1
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1).
Cf.
A143025 with a similar principle of construction.
Stratified definition, corrected indices, extended,
R. J. Mathar, Dec 10 2008
Comments