cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A061046 Denominator of 1/36 - 1/n^2.

Original entry on oeis.org

36, 9, 12, 144, 900, 1, 1764, 576, 324, 225, 4356, 48, 6084, 441, 300, 2304, 10404, 81, 12996, 3600, 196, 1089, 19044, 192, 22500, 1521, 2916, 7056, 30276, 75, 34596, 9216, 484, 2601, 44100, 1296, 49284, 3249, 2028, 14400, 60516, 147, 66564, 17424, 8100, 4761, 79524, 256, 86436, 5625, 3468, 24336, 101124, 729, 108900, 28224, 4332, 7569, 125316, 400, 133956, 8649, 15876, 36864, 152100, 363, 161604, 41616, 6348, 11025, 181476, 5184
Offset: 1

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Crossrefs

See A061045 for numerators and further information. Cf. A061035-A061050.

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a061046 = denominator . (1 % 36 -) . recip . (^ 2) . fromIntegral
    -- Reinhard Zumkeller, Jan 06 2014
    
  • Mathematica
    Denominator[1/36-1/Range[80]^2] (* Harvey P. Dale, Feb 06 2012 *)
  • PARI
    for(n=6,50, print1(denominator(1/6^2 - 1/n^2), ", ")) \\ G. C. Greubel, Jul 07 2017

A061048 Denominator of 1/49 - 1/n^2.

Original entry on oeis.org

1, 3136, 3969, 4900, 5929, 7056, 8281, 196, 11025, 12544, 14161, 15876, 17689, 19600, 441, 23716, 25921, 28224, 30625, 33124, 35721, 784, 41209, 44100, 47089, 50176, 53361, 56644, 1225, 63504, 67081, 70756, 74529, 78400, 82369
Offset: 7

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Crossrefs

Cf. A061047 (numerator).

Programs

  • Mathematica
    Table[Denominator[1/7^2 - 1/n^2], {n, 7, 50}] (* G. C. Greubel, Jul 07 2017 *)
  • PARI
    for(n=7,50, print1(denominator(1/7^2 - 1/n^2), ", ")) \\ G. C. Greubel, Jul 07 2017

A165441 Table T(k,n) read by antidiagonals: denominator of 1/min(n,k)^2 -1/max(n,k)^2.

Original entry on oeis.org

1, 4, 4, 9, 1, 9, 16, 36, 36, 16, 25, 16, 1, 16, 25, 36, 100, 144, 144, 100, 36, 49, 9, 225, 1, 225, 9, 49, 64, 196, 12, 400, 400, 12, 196, 64, 81, 64, 441, 144, 1, 144, 441, 64, 81, 100, 324, 576, 784, 900, 900, 784, 576, 324, 100, 121, 25, 81, 64, 1225, 1, 1225, 64, 81, 25, 121
Offset: 1

Views

Author

Paul Curtz, Sep 19 2009

Keywords

Comments

A synopsis of the denominators of the transitions in the Rydberg-Ritz spectrum of hydrogenic atoms.

Examples

			.1,   4,   9,   16,   25,   36,   49,   64,   81, ... A000290
.4,   1,  36,   16,  100,    9,  196,   64,  324, ... A061038
.9,  36,   1,  144,  225,   12,  441,  576,   81, ... A061040
16,  16, 144,    1,  400,  144,  784,   64, 1296, ... A061042
25, 100, 225,  400,    1,  900, 1225, 1600, 2025, ... A061044
36,   9,  12,  144,  900,    1, 1764,  576,  324, ... A061046
49, 196, 441,  784, 1225, 1764,    1, 3136, 3969, ... A061048
64,  64, 576,   64, 1600,  576, 3136,    1, 5184, ... A061050
81, 324,  81, 1296, 2025,  324, 3969, 5184,    1, ...
		

Programs

  • Maple
    T:= (k,n)-> denom(1/min (n,k)^2 -1/max (n, k)^2):
    seq(seq(T(k, d-k), k=1..d-1), d=2..12);
  • Mathematica
    T[n_, k_] := Denominator[1/Min[n, k]^2 - 1/Max[n, k]^2];
    Table[T[n-k, k], {n, 2, 12}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Feb 04 2020 *)

Formula

T(n,k) = A165727(n,k).

Extensions

Edited by R. J. Mathar, Feb 27 2010, Mar 03 2010

A061036 Triangle T(m,n) = denominator of 1/m^2 - 1/n^2, n >= 1, m=n,n-1,n-2,...,1.

Original entry on oeis.org

1, 1, 4, 1, 36, 9, 1, 144, 16, 16, 1, 400, 225, 100, 25, 1, 900, 144, 12, 9, 36, 1, 1764, 1225, 784, 441, 196, 49, 1, 3136, 576, 1600, 64, 576, 64, 64, 1, 5184, 3969, 324, 2025, 1296, 81, 324, 81, 1, 8100, 1600, 4900, 225, 100, 400, 900, 25, 100, 1, 12100, 9801
Offset: 1

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Comments

Wavelengths in hydrogen spectrum are given by Rydberg's formula 1/wavelength = constant*(1/m^2 - 1/n^2).

Examples

			Triangle 1/m^2-1/n^2, m >= 1, 1<=n<=m, (i.e. with rows reversed) begins
0
3/4, 0
8/9, 5/36, 0
15/16, 3/16, 7/144, 0
24/25, 21/100, 16/225, 9/400, 0
35/36, 2/9, 1/12, 5/144, 11/900, 0
		

References

  • J. E. Brady and G. E. Humiston, General Chemistry, 3rd. ed., Wiley; p. 77.

Crossrefs

Cf. A061035. Rows give A061037-A061050.
Cf. A126252.

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a061036 n k = a061036_tabl !! (n-1) !! (k-1)
    a061036_row = map denominator . balmer where
       balmer n = map (subtract (1 % n ^ 2) . (1 %) . (^ 2)) [n, n-1 .. 1]
    a061036_tabl = map a061036_row [1..]
    -- Reinhard Zumkeller, Apr 12 2012
  • Mathematica
    t[m_, n_] := Denominator[1/m^2 - 1/n^2]; Table[t[m, n], {n, 1, 12}, {m, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 17 2012 *)

Extensions

More terms from Naohiro Nomoto, Jul 15 2001

A165727 Table T(k,n) read by antidiagonals: denominator of 1/min(n,k)^2 -1/max(n,k)^2 with T(0,n) = T(k,0) = 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 4, 4, 0, 0, 9, 1, 9, 0, 0, 16, 36, 36, 16, 0, 0, 25, 16, 1, 16, 25, 0, 0, 36, 100, 144, 144, 100, 36, 0, 0, 49, 9, 225, 1, 225, 9, 49, 0, 0, 64, 196, 12, 400, 400, 12, 196, 64, 0, 0, 81, 64, 441, 144, 1, 144, 441, 64, 81, 0, 0, 100, 324, 576, 784, 900, 900, 784, 576, 324, 100, 0
Offset: 0

Views

Author

Paul Curtz, Sep 25 2009

Keywords

Comments

A synopsis of the denominators of the transitions in the Rydberg-Ritz spectrum of hydrogenic atoms.

Examples

			0,  0,   0,   0,    0,    0,    0,    0,    0,    0, ... A000004
0,  1,   4,   9,   16,   25,   36,   49,   64,   81, ... A000290
0,  4,   1,  36,   16,  100,    9,  196,   64,  324, ... A061038
0,  9,  36,   1,  144,  225,   12,  441,  576,   81, ... A061040
0, 16,  16, 144,    1,  400,  144,  784,   64, 1296, ... A061042
0, 25, 100, 225,  400,    1,  900, 1225, 1600, 2025, ... A061044
0, 36,   9,  12,  144,  900,    1, 1764,  576,  324, ... A061046
0, 49, 196, 441,  784, 1225, 1764,    1, 3136, 3969, ... A061048
0, 64,  64, 576,   64, 1600,  576, 3136,    1, 5184, ... A061050
0, 81, 324,  81, 1296, 2025,  324, 3969, 5184,    1, ...
		

Crossrefs

Cf. A165441 (top row and left column removed)

Programs

  • Maple
    T:= (k,n)-> `if` (n=0 or k=0, 0, denom (1/min (n,k)^2 -1/max (n, k)^2)):
    seq (seq (T (k, d-k), k=0..d), d=0..11);

Extensions

Edited by R. J. Mathar, Feb 27 2010, Mar 03 2010

A152018 Denominator of 1/n^2-1/(3n)^2 or of 8/(9n^2).

Original entry on oeis.org

9, 9, 81, 18, 225, 81, 441, 72, 729, 225, 1089, 162, 1521, 441, 2025, 288, 2601, 729, 3249, 450, 3969, 1089, 4761, 648, 5625, 1521, 6561, 882, 7569, 2025, 8649, 1152, 9801, 2601, 11025, 1458, 12321, 3249, 13689, 1800, 15129, 3969, 16641, 2178, 18225
Offset: 1

Views

Author

Paul Curtz, Nov 20 2008

Keywords

Comments

The associated terms of the n-th main series of the Hydrogen energy spectrum are A000290(3), A061038(6), A061040(9), A061042(12), A061044(15), A061046(18), A061048(21), A061050(24), etc.
All numbers are multiples of 9.

Crossrefs

Cf. A143025 with a similar principle of construction.
Cf. A291050.

Programs

  • Mathematica
    Denominator/@(8/(9Range[50]^2))  (* Harvey P. Dale, Mar 15 2011 *)

Formula

Sum_{n>=1} 1/a(n) = Pi^2/27 (A291050). - Amiram Eldar, Sep 14 2022

Extensions

Stratified definition, corrected indices, extended, R. J. Mathar, Dec 10 2008
Previous Showing 11-16 of 16 results.