cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A061045 Numerator of 1/36 - 1/n^2.

Original entry on oeis.org

-35, -2, -1, -5, -11, 0, 13, 7, 5, 4, 85, 1, 133, 10, 7, 55, 253, 2, 325, 91, 5, 28, 493, 5, 589, 40, 77, 187, 805, 2, 925, 247, 13, 70, 1189, 35, 1333, 88, 55, 391, 1645, 4, 1813, 475, 221, 130, 2173, 7, 2365, 154, 95, 667, 2773, 20, 2989, 775, 119, 208, 3445, 11, 3685, 238, 437, 1015, 4189, 10
Offset: 1

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Comments

Sixth case of Rydberg's formula. From Humphrey's spectrum of hydrogen. See A045944, A000567, A061043, A061046, A061047. - Paul Curtz, Dec 08 2008

Examples

			The fractions are -35/36, -2/9, -1/12, -5/144, -11/900, 0, 13/1764, 7/576, 5/324, 4/225, 85/4356, 1/48, 133/6084, 10/441, 7/300, 55/2304, 253/10404, 2/81, 325/12996, ...
		

Crossrefs

A061046 gives denominators.

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a061045 = numerator . (1 % 36 -) . recip . (^ 2) . fromIntegral
    -- Reinhard Zumkeller, Jan 06 2014
    
  • Magma
    [Numerator(1/6^2 -1/n^2): n in [1..80]]; // G. C. Greubel, Feb 24 2023
    
  • Mathematica
    Numerator[(1/36-1/Range[100]^2)] (* Harvey P. Dale, Mar 17 2013 *)
  • SageMath
    def A061045(n): return ((n^2-36)/(6*n)^2).numerator()
    [A061045(n) for n in range(1,81)] # G. C. Greubel, Feb 24 2023

A261327 a(n) = (n^2 + 4) / 4^((n + 1) mod 2).

Original entry on oeis.org

1, 5, 2, 13, 5, 29, 10, 53, 17, 85, 26, 125, 37, 173, 50, 229, 65, 293, 82, 365, 101, 445, 122, 533, 145, 629, 170, 733, 197, 845, 226, 965, 257, 1093, 290, 1229, 325, 1373, 362, 1525, 401, 1685, 442, 1853, 485, 2029, 530, 2213, 577, 2405, 626, 2605, 677
Offset: 0

Views

Author

Paul Curtz, Aug 15 2015

Keywords

Comments

Using (n+sqrt(4+n^2))/2, after the integer 1 for n=0, the reduced metallic means are b(1) = (1+sqrt(5))/2, b(2) = 1+sqrt(2), b(3) = (3+sqrt(13))/2, b(4) = 2+sqrt(5), b(5) = (5+sqrt(29))/2, b(6) = 3+sqrt(10), b(7) = (7+sqrt(53))/2, b(8) = 4+sqrt(17), b(9) = (9+sqrt(85))/2, b(10) = 5+sqrt(26), b(11) = (11+sqrt(125))/2 = (11+5*sqrt(5))/2, ... . The last value yields the radicals in a(n) or A013946.
b(2) = 2.41, b(3) = 3.30, b(4) = 4.24, b(5) = 5.19 are "good" approximations of fractal dimensions corresponding to dimensions 3, 4, 5, 6: 2.48, 3.38, 4.33 and 5.45 based on models. See "Arbres DLA dans les espaces de dimension supérieure: la théorie des peaux entropiques" in Queiros-Condé et al. link. DLA: beginning of the title of the Witten et al. link.
Consider the symmetric array of the half extended Rydberg-Ritz spectrum of the hydrogen atom:
0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, ...
-1/0, 0, 3/4, 8/9, 15/16, 24/25, 35/36, 48/49, ...
-1/0, -3/4, 0, 5/36, 3/16, 21/100, 2/9, 45/196, ...
-1/0, -8/9, -5/36, 0, 7/144, 16/225, 1/12, 40/441, ...
-1/0, -15/16, -3/16, -7/144, 0, 9/400, 5/144, 33/784, ...
-1/0, -24/25, -21/100, -16/225, -9/400, 0, 11/900, 24/1225, ...
-1/0, -35/36, -2/9, -1/12, -5/144, -11/900, 0, 13/1764, ...
-1/0, -48/49, -45/196, -40/441, -33/784, -24/1225, -13/1764, 0, ... .
The numerators are almost A165795(n).
Successive rows: A000007(n)/A057427(n), A005563(n-1)/A000290(n), A061037(n)/A061038(n), A061039(n)/A061040(n), A061041(n)/A061042(n), A061043(n)/A061044(n), A061045(n)/A061046(n), A061047(n)/A061048(n), A061049(n)/A061050(n).
A144433(n) or A195161(n+1) are the numerators of the second upper diagonal (denominators: A171522(n)).
c(n+1) = a(n) + a(n+1) = 6, 7, 15, 18, 34, 39, 63, 70, 102, 111, ... .
c(n+3) - c(n+1) = 9, 11, 19, 21, 29, 31, ... = A090771(n+2).
The final digit of a(n) is neither 4 nor 8. - Paul Curtz, Jan 30 2019

Crossrefs

Programs

  • Magma
    [Numerator(1+n^2/4): n in [0..60]]; // Vincenzo Librandi, Aug 15 2015
    
  • Maple
    A261327:=n->numer((4 + n^2)/4); seq(A261327(n), n=0..60); # Wesley Ivan Hurt, Aug 15 2015
  • Mathematica
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 5, 2, 13, 5, 29}, 60] (* Vincenzo Librandi, Aug 15 2015 *)
    a[n_] := (n^2 + 4) / 4^Mod[n + 1, 2]; Table[a[n], {n, 0, 52}] (* Peter Luschny, Mar 18 2022 *)
  • PARI
    vector(60, n, n--; numerator(1+n^2/4)) \\ Michel Marcus, Aug 15 2015
    
  • PARI
    Vec((1+5*x-x^2-2*x^3+2*x^4+5*x^5)/(1-x^2)^3 + O(x^60)) \\ Colin Barker, Aug 15 2015
    
  • PARI
    a(n)=if(n%2,n^2+4,(n/2)^2+1) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    [(n*n+4)//4**((n+1)%2) for n in range(60)] # Gennady Eremin, Mar 18 2022
  • Sage
    [numerator(1+n^2/4) for n in (0..60)] # G. C. Greubel, Feb 09 2019
    

Formula

a(n) = numerator(1 + n^2/4). (Previous name.) See A010685 (denominators).
a(2*k) = 1 + k^2.
a(2*k+1) = 5 + 4*k*(k+1).
a(2*k+1) = 4*a(2*k) + 4*k + 1.
a(4*k+2) = A069894(k). - Paul Curtz, Jan 30 2019
a(-n) = a(n).
a(n+2) = a(n) + A144433(n) (or A195161(n+1)).
a(n) = A168077(n) + period 2: repeat 1, 4.
a(n) = A171621(n) + period 2: repeat 2, 8.
From Colin Barker, Aug 15 2015: (Start)
a(n) = (5 - 3*(-1)^n)*(4 + n^2)/8.
a(n) = n^2/4 + 1 for n even;
a(n) = n^2 + 4 for n odd.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>5.
G.f.: (1 + 5*x - x^2 - 2*x^3 + 2*x^4 + 5*x^5)/ (1 - x^2)^3. (End)
E.g.f.: (5/8)*(x^2 + x + 4)*exp(x) - (3/8)*(x^2 - x + 4)*exp(-x). - Robert Israel, Aug 18 2015
Sum_{n>=0} 1/a(n) = (4*coth(Pi)+tanh(Pi))*Pi/8 + 1/2. - Amiram Eldar, Mar 22 2022

Extensions

New name by Peter Luschny, Mar 18 2022

A171522 Denominator of 1/n^2-1/(n+2)^2.

Original entry on oeis.org

0, 9, 16, 225, 144, 1225, 576, 3969, 1600, 9801, 3600, 20449, 7056, 38025, 12544, 65025, 20736, 104329, 32400, 159201, 48400, 233289, 69696, 330625, 97344, 455625, 132496, 613089, 176400, 808201, 230400, 1046529, 295936, 1334025, 374544, 1677025, 467856
Offset: 0

Views

Author

Paul Curtz, Dec 11 2009

Keywords

Comments

This is the third column in the table of denominators of the hydrogenic spectra (the main diagonal A147560):
0, 0, 0, 0, 0, 0, 0, 0... A000004
1, 4, 9, 16, 25, 36, 49, 64... A000290
1, 36, 16, 100, 9, 196, 64, 324... A061038
1, 144, 225, 12, 441, 576, 81, 900... A061040
1, 400, 144, 784, 64,1296, 400,1936... A061042
1, 900 1225,1600,2025, 100,3025,3600... A061044
1,1764, 576, 324, 225,4356, 48,6084... A061046
1,3136,3969,4900,5929,7056,8281, 196... A061048.

Crossrefs

Cf. A105371. Bisections: A060300, A069075.

Programs

  • Maple
    A171522 := proc(n) if n = 0 then 0 else lcm(n+2,n) ; %^2 ; end if ; end:
    seq(A171522(n),n=0..70) ; # R. J. Mathar, Dec 15 2009
  • Mathematica
    a[n_] := If[EvenQ[n], (n*(n+2))^2/4, (n*(n+2))^2]; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Jun 13 2017 *)
  • PARI
    concat(0, Vec(x*(x^8+4*x^6+16*x^5+190*x^4+64*x^3+180*x^2+16*x+9) / ((x-1)^5*-(x+1)^5) + O(x^100))) \\ Colin Barker, Nov 05 2014

Formula

a(n) = (A066830(n+1))^2.
a(n) = -((-5+3*(-1)^n)*n^2*(2+n)^2)/8. - Colin Barker, Nov 05 2014
G.f.: x*(x^8+4*x^6+16*x^5+190*x^4+64*x^3+180*x^2+16*x+9) / ((x-1)^5*-(x+1)^5). - Colin Barker, Nov 05 2014

Extensions

Edited and extended by R. J. Mathar, Dec 15 2009

A165441 Table T(k,n) read by antidiagonals: denominator of 1/min(n,k)^2 -1/max(n,k)^2.

Original entry on oeis.org

1, 4, 4, 9, 1, 9, 16, 36, 36, 16, 25, 16, 1, 16, 25, 36, 100, 144, 144, 100, 36, 49, 9, 225, 1, 225, 9, 49, 64, 196, 12, 400, 400, 12, 196, 64, 81, 64, 441, 144, 1, 144, 441, 64, 81, 100, 324, 576, 784, 900, 900, 784, 576, 324, 100, 121, 25, 81, 64, 1225, 1, 1225, 64, 81, 25, 121
Offset: 1

Views

Author

Paul Curtz, Sep 19 2009

Keywords

Comments

A synopsis of the denominators of the transitions in the Rydberg-Ritz spectrum of hydrogenic atoms.

Examples

			.1,   4,   9,   16,   25,   36,   49,   64,   81, ... A000290
.4,   1,  36,   16,  100,    9,  196,   64,  324, ... A061038
.9,  36,   1,  144,  225,   12,  441,  576,   81, ... A061040
16,  16, 144,    1,  400,  144,  784,   64, 1296, ... A061042
25, 100, 225,  400,    1,  900, 1225, 1600, 2025, ... A061044
36,   9,  12,  144,  900,    1, 1764,  576,  324, ... A061046
49, 196, 441,  784, 1225, 1764,    1, 3136, 3969, ... A061048
64,  64, 576,   64, 1600,  576, 3136,    1, 5184, ... A061050
81, 324,  81, 1296, 2025,  324, 3969, 5184,    1, ...
		

Programs

  • Maple
    T:= (k,n)-> denom(1/min (n,k)^2 -1/max (n, k)^2):
    seq(seq(T(k, d-k), k=1..d-1), d=2..12);
  • Mathematica
    T[n_, k_] := Denominator[1/Min[n, k]^2 - 1/Max[n, k]^2];
    Table[T[n-k, k], {n, 2, 12}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Feb 04 2020 *)

Formula

T(n,k) = A165727(n,k).

Extensions

Edited by R. J. Mathar, Feb 27 2010, Mar 03 2010

A165727 Table T(k,n) read by antidiagonals: denominator of 1/min(n,k)^2 -1/max(n,k)^2 with T(0,n) = T(k,0) = 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 4, 4, 0, 0, 9, 1, 9, 0, 0, 16, 36, 36, 16, 0, 0, 25, 16, 1, 16, 25, 0, 0, 36, 100, 144, 144, 100, 36, 0, 0, 49, 9, 225, 1, 225, 9, 49, 0, 0, 64, 196, 12, 400, 400, 12, 196, 64, 0, 0, 81, 64, 441, 144, 1, 144, 441, 64, 81, 0, 0, 100, 324, 576, 784, 900, 900, 784, 576, 324, 100, 0
Offset: 0

Views

Author

Paul Curtz, Sep 25 2009

Keywords

Comments

A synopsis of the denominators of the transitions in the Rydberg-Ritz spectrum of hydrogenic atoms.

Examples

			0,  0,   0,   0,    0,    0,    0,    0,    0,    0, ... A000004
0,  1,   4,   9,   16,   25,   36,   49,   64,   81, ... A000290
0,  4,   1,  36,   16,  100,    9,  196,   64,  324, ... A061038
0,  9,  36,   1,  144,  225,   12,  441,  576,   81, ... A061040
0, 16,  16, 144,    1,  400,  144,  784,   64, 1296, ... A061042
0, 25, 100, 225,  400,    1,  900, 1225, 1600, 2025, ... A061044
0, 36,   9,  12,  144,  900,    1, 1764,  576,  324, ... A061046
0, 49, 196, 441,  784, 1225, 1764,    1, 3136, 3969, ... A061048
0, 64,  64, 576,   64, 1600,  576, 3136,    1, 5184, ... A061050
0, 81, 324,  81, 1296, 2025,  324, 3969, 5184,    1, ...
		

Crossrefs

Cf. A165441 (top row and left column removed)

Programs

  • Maple
    T:= (k,n)-> `if` (n=0 or k=0, 0, denom (1/min (n,k)^2 -1/max (n, k)^2)):
    seq (seq (T (k, d-k), k=0..d), d=0..11);

Extensions

Edited by R. J. Mathar, Feb 27 2010, Mar 03 2010

A152018 Denominator of 1/n^2-1/(3n)^2 or of 8/(9n^2).

Original entry on oeis.org

9, 9, 81, 18, 225, 81, 441, 72, 729, 225, 1089, 162, 1521, 441, 2025, 288, 2601, 729, 3249, 450, 3969, 1089, 4761, 648, 5625, 1521, 6561, 882, 7569, 2025, 8649, 1152, 9801, 2601, 11025, 1458, 12321, 3249, 13689, 1800, 15129, 3969, 16641, 2178, 18225
Offset: 1

Views

Author

Paul Curtz, Nov 20 2008

Keywords

Comments

The associated terms of the n-th main series of the Hydrogen energy spectrum are A000290(3), A061038(6), A061040(9), A061042(12), A061044(15), A061046(18), A061048(21), A061050(24), etc.
All numbers are multiples of 9.

Crossrefs

Cf. A143025 with a similar principle of construction.
Cf. A291050.

Programs

  • Mathematica
    Denominator/@(8/(9Range[50]^2))  (* Harvey P. Dale, Mar 15 2011 *)

Formula

Sum_{n>=1} 1/a(n) = Pi^2/27 (A291050). - Amiram Eldar, Sep 14 2022

Extensions

Stratified definition, corrected indices, extended, R. J. Mathar, Dec 10 2008
Showing 1-6 of 6 results.