A146539 A061045 mod 9.
0, 4, 7, 5, 4, 4, 1, 7, 1, 7, 1, 1, 2, 1, 1, 5, 1, 7, 5, 4, 4, 5, 7, 4, 2, 7, 4, 4, 7, 1, 8
Offset: 0
Keywords
Crossrefs
Cf. A146322.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
[(2*n-1)*(4*n-1): n in [0..50]]; // G. C. Greubel, Sep 19 2018
Table[(2*n - 1)*(4*n - 1), {n, 0, 50}] (* G. C. Greubel, Jul 06 2017 *) LinearRecurrence[{3,-3,1},{1,3,21},50] (* Harvey P. Dale, Aug 25 2019 *)
vector(60, n, n--; (2*n-1)*(4*n-1)) \\ Michel Marcus, Apr 12 2015
&cat [[3, 3, 1]^^30]; // Wesley Ivan Hurt, Jul 02 2016
seq(op([3, 3, 1]), n=1..50); # Wesley Ivan Hurt, Jul 02 2016
A144437[n_]:=Denominator[n/3]; Array[A144437,100] (* Enrique Pérez Herrero, Oct 05 2011 *) CoefficientList[Series[(3 + 3 x + x^2)/(1 - x^3), {x, 0, 120}], x] (* Michael De Vlieger, Jul 02 2016 *) Table[Mod[2*n^2 + 1, 3,1], {n,1,50}] (* G. C. Greubel, Aug 24 2017 *)
a(n)=if(n%3,3,1) \\ Charles R Greathouse IV, Sep 28 2015
[Numerator(1+n^2/4): n in [0..60]]; // Vincenzo Librandi, Aug 15 2015
A261327:=n->numer((4 + n^2)/4); seq(A261327(n), n=0..60); # Wesley Ivan Hurt, Aug 15 2015
LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 5, 2, 13, 5, 29}, 60] (* Vincenzo Librandi, Aug 15 2015 *) a[n_] := (n^2 + 4) / 4^Mod[n + 1, 2]; Table[a[n], {n, 0, 52}] (* Peter Luschny, Mar 18 2022 *)
vector(60, n, n--; numerator(1+n^2/4)) \\ Michel Marcus, Aug 15 2015
Vec((1+5*x-x^2-2*x^3+2*x^4+5*x^5)/(1-x^2)^3 + O(x^60)) \\ Colin Barker, Aug 15 2015
a(n)=if(n%2,n^2+4,(n/2)^2+1) \\ Charles R Greathouse IV, Oct 16 2015
[(n*n+4)//4**((n+1)%2) for n in range(60)] # Gennady Eremin, Mar 18 2022
[numerator(1+n^2/4) for n in (0..60)] # G. C. Greubel, Feb 09 2019
[5+3/2*(-1)^(n-1)*(n-1)+3*(-1)^(n-1)+5/2*(n-1): n in [1..70]]; // Vincenzo Librandi, Jul 30 2011
A144433:=n->(n+1)*4^(n mod 2); seq(A144433(n), n=1..100); # Wesley Ivan Hurt, Nov 27 2013
Table[(n + 1)* 4^Mod[n, 2], {n, 100}] (* Wesley Ivan Hurt, Nov 27 2013 *)
x='x+O('x^50); Vec( x*(8+3*x-x^3)/((1-x)^2*(1+x)^2)) \\ G. C. Greubel, Sep 19 2018
import Data.Ratio ((%), denominator) a061046 = denominator . (1 % 36 -) . recip . (^ 2) . fromIntegral -- Reinhard Zumkeller, Jan 06 2014
Denominator[1/36-1/Range[80]^2] (* Harvey P. Dale, Feb 06 2012 *)
for(n=6,50, print1(denominator(1/6^2 - 1/n^2), ", ")) \\ G. C. Greubel, Jul 07 2017
The full array of numerators starts in row n=1 with columns m>=0 as: -1...0...3...8..15..24..35..48..63..80..99. A005563 -1..-3...0...5...3..21...2..45..15..77...6. A061037, A070262 -1..-8..-5...0...7..16...1..40..55...8..91. A061039 -1.-15..-3..-7...0...9...5..33...3..65..21. A061041 -1.-24.-21.-16..-9...0..11..24..39..56...3. A061043 -1.-35..-2..-1..-5.-11...0..13...7...5...4. A061045 -1.-48.-45.-40.-33.-24.-13...0..15..32..51. A061047 -1.-63.-15.-55..-3.-39..-7.-15...0..17...9. A061049 The triangle is the portion below the main diagonal, left from the zeros, 0<=m<n.
T[n_, 0] := -1; T[n_, k_] := 1/n^2 - 1/k^2; Table[Numerator[T[n, k]], {n, 1, 100}, {k, 0, n - 1}] // Flatten (* G. C. Greubel, Sep 19 2018 *)
The table starts 3 5 8 7 3 15 9 16 21 24 11 5 1 2 35 13 24 33 40 45 48 15 7 39 3 55 15 63 17 32 5 56 65 8 77 80 19 9 51 4 3 21 91 6 99
[[Numerator(1/(n-k)^2 -1/n^2): k in [1..n-1]]: n in [2..20]]; // G. C. Greubel, Sep 20 2018
Table[Numerator[1/(n-k)^2 -1/n^2], {n, 2, 20}, {k, 1, n-1}]//Flatten (* G. C. Greubel, Sep 20 2018 *)
for(n=2,20, for(k=1,n-1, print1(numerator(1/(n-k)^2 -1/n^2), ", "))) \\ G. C. Greubel, Sep 20 2018
&cat [[1, 8, 2, 8]^^30]; // Wesley Ivan Hurt, Jul 10 2016
seq(op([1, 8, 2, 8]), n=0..50); # Wesley Ivan Hurt, Jul 10 2016
PadRight[{}, 120, {1, 8, 2, 8}] (* Harvey P. Dale, Jul 01 2015 *)
a(n)=[1,8,2,8][n%4+1] \\ Charles R Greathouse IV, Jun 02 2011
[1] cat [Numerator(5/(6*n)^2): n in [1..100]]; // G. C. Greubel, Sep 20 2018
Table[If[n==0,1,Numerator[5/(6*n)^2]], {n,0,100}] (* G. C. Greubel, Sep 20 2018 *)
concat([1], vector(100, n, numerator(5/(6*n)^2))) \\ G. C. Greubel, Sep 20 2018
Comments