cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A146539 A061045 mod 9.

Original entry on oeis.org

0, 4, 7, 5, 4, 4, 1, 7, 1, 7, 1, 1, 2, 1, 1, 5, 1, 7, 5, 4, 4, 5, 7, 4, 2, 7, 4, 4, 7, 1, 8
Offset: 0

Views

Author

Paul Curtz, Oct 31 2008

Keywords

Comments

From Humphreys spectrum of hydrogen.

Crossrefs

Cf. A146322.

A033567 a(n) = (2*n-1)*(4*n-1).

Original entry on oeis.org

1, 3, 21, 55, 105, 171, 253, 351, 465, 595, 741, 903, 1081, 1275, 1485, 1711, 1953, 2211, 2485, 2775, 3081, 3403, 3741, 4095, 4465, 4851, 5253, 5671, 6105, 6555, 7021, 7503, 8001, 8515, 9045, 9591, 10153, 10731, 11325, 11935, 12561, 13203, 13861, 14535, 15225
Offset: 0

Views

Author

Keywords

Comments

a(n+1) = A005563(1), A061037(3), A061039(5), A061041(7), A061043(9), A061045(11), A061047(13), A061049(15). Lyman, Balmer, Paschen, Brackett, Pfund, Humphreys, Hansen-Strong, ... spectra of hydrogen. - Paul Curtz, Oct 08 2008
Sequence found by reading the segment [1, 3] together with the line from 3, in the direction 3, 21, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Sep 03 2011

Crossrefs

Programs

  • Magma
    [(2*n-1)*(4*n-1): n in [0..50]]; // G. C. Greubel, Sep 19 2018
  • Mathematica
    Table[(2*n - 1)*(4*n - 1), {n, 0, 50}] (* G. C. Greubel, Jul 06 2017 *)
    LinearRecurrence[{3,-3,1},{1,3,21},50] (* Harvey P. Dale, Aug 25 2019 *)
  • PARI
    vector(60, n, n--; (2*n-1)*(4*n-1)) \\ Michel Marcus, Apr 12 2015
    

Formula

a(n) = a(n-1) + 16*n - 14 (with a(0)=1). - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Jul 06 2017: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-2).
E.g.f.: (1 + 2*x + 8*x^2)*exp(x).
G.f.: (1 + 15*x^2)/(1 - x)^3. (End)
From Amiram Eldar, Jan 03 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 + Pi/4 - log(2)/2.
Sum_{n>=0} (-1)^n/a(n) = 1 + (sqrt(2)-1)*Pi/4 + log(sqrt(2)-1)/sqrt(2). (End)

Extensions

More terms from Michel Marcus, Apr 12 2015

A144437 Period 3: repeat [3, 3, 1].

Original entry on oeis.org

3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3
Offset: 1

Views

Author

Paul Curtz, Oct 05 2008

Keywords

Comments

The sequence is generated from numerators in the energy differences of the hydrogen spectrum: A005563(1), A061037(4), A061039(6), A061041(8), A061043(10), A061045(12), A061047(14), A061049(16), ...
Conjecture: a(n) is the separatix. See A045944.
Also the decimal expansion of the constant 3310/999. - R. J. Mathar, May 21 2009
Continued fraction expansion of A171417.
Greatest common divisor of (n+1)^2-1 and (n+1)^2+2. - Bruno Berselli, Mar 08 2017

Crossrefs

Numerators in the energy differences of the hydrogen spectrum: A005563(1), A061037(4), A061039(6), A061041(8), A061043(10), A061045(12), A061047(14), A061049(16), ...

Programs

Formula

a(n) = (7-4*cos(2*Pi*n/3))/3. - Jaume Oliver Lafont, Nov 23 2008
G.f.: x*(3 + 3*x + x^2)/((1 - x)*(1 + x + x^2)). - R. J. Mathar, May 21 2009
a(n) = 3/gcd(n,3). - Reinhard Zumkeller, Oct 30 2009
a(n) = denominator(n^k/3), where k>0 is an integer. - Enrique Pérez Herrero, Oct 05 2011
a(n) = gcd(T(n+1), T(2)) = A256095(n+1, 2), with the triangular numbers T = A000217, for n >= 1. - Wolfdieter Lang, Mar 17 2015
a(n) = a(n-3) for n>3; a(n) = A169609(n) for n>0. - Wesley Ivan Hurt, Jul 02 2016
E.g.f.: (1/3)*(7*exp(x) - 4*exp(-x/2)*cos(sqrt(3)*x/2) - 3). - G. C. Greubel, Aug 24 2017
From Nicolas Bělohoubek, Nov 11 2021: (Start)
a(n) = 9/(a(n-2)*a(n-1)).
a(n) = 7 - a(n-2) - a(n-1). See also A052901 or A069705. (End)

Extensions

Edited by R. J. Mathar, May 21 2009

A261327 a(n) = (n^2 + 4) / 4^((n + 1) mod 2).

Original entry on oeis.org

1, 5, 2, 13, 5, 29, 10, 53, 17, 85, 26, 125, 37, 173, 50, 229, 65, 293, 82, 365, 101, 445, 122, 533, 145, 629, 170, 733, 197, 845, 226, 965, 257, 1093, 290, 1229, 325, 1373, 362, 1525, 401, 1685, 442, 1853, 485, 2029, 530, 2213, 577, 2405, 626, 2605, 677
Offset: 0

Views

Author

Paul Curtz, Aug 15 2015

Keywords

Comments

Using (n+sqrt(4+n^2))/2, after the integer 1 for n=0, the reduced metallic means are b(1) = (1+sqrt(5))/2, b(2) = 1+sqrt(2), b(3) = (3+sqrt(13))/2, b(4) = 2+sqrt(5), b(5) = (5+sqrt(29))/2, b(6) = 3+sqrt(10), b(7) = (7+sqrt(53))/2, b(8) = 4+sqrt(17), b(9) = (9+sqrt(85))/2, b(10) = 5+sqrt(26), b(11) = (11+sqrt(125))/2 = (11+5*sqrt(5))/2, ... . The last value yields the radicals in a(n) or A013946.
b(2) = 2.41, b(3) = 3.30, b(4) = 4.24, b(5) = 5.19 are "good" approximations of fractal dimensions corresponding to dimensions 3, 4, 5, 6: 2.48, 3.38, 4.33 and 5.45 based on models. See "Arbres DLA dans les espaces de dimension supérieure: la théorie des peaux entropiques" in Queiros-Condé et al. link. DLA: beginning of the title of the Witten et al. link.
Consider the symmetric array of the half extended Rydberg-Ritz spectrum of the hydrogen atom:
0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, ...
-1/0, 0, 3/4, 8/9, 15/16, 24/25, 35/36, 48/49, ...
-1/0, -3/4, 0, 5/36, 3/16, 21/100, 2/9, 45/196, ...
-1/0, -8/9, -5/36, 0, 7/144, 16/225, 1/12, 40/441, ...
-1/0, -15/16, -3/16, -7/144, 0, 9/400, 5/144, 33/784, ...
-1/0, -24/25, -21/100, -16/225, -9/400, 0, 11/900, 24/1225, ...
-1/0, -35/36, -2/9, -1/12, -5/144, -11/900, 0, 13/1764, ...
-1/0, -48/49, -45/196, -40/441, -33/784, -24/1225, -13/1764, 0, ... .
The numerators are almost A165795(n).
Successive rows: A000007(n)/A057427(n), A005563(n-1)/A000290(n), A061037(n)/A061038(n), A061039(n)/A061040(n), A061041(n)/A061042(n), A061043(n)/A061044(n), A061045(n)/A061046(n), A061047(n)/A061048(n), A061049(n)/A061050(n).
A144433(n) or A195161(n+1) are the numerators of the second upper diagonal (denominators: A171522(n)).
c(n+1) = a(n) + a(n+1) = 6, 7, 15, 18, 34, 39, 63, 70, 102, 111, ... .
c(n+3) - c(n+1) = 9, 11, 19, 21, 29, 31, ... = A090771(n+2).
The final digit of a(n) is neither 4 nor 8. - Paul Curtz, Jan 30 2019

Crossrefs

Programs

  • Magma
    [Numerator(1+n^2/4): n in [0..60]]; // Vincenzo Librandi, Aug 15 2015
    
  • Maple
    A261327:=n->numer((4 + n^2)/4); seq(A261327(n), n=0..60); # Wesley Ivan Hurt, Aug 15 2015
  • Mathematica
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 5, 2, 13, 5, 29}, 60] (* Vincenzo Librandi, Aug 15 2015 *)
    a[n_] := (n^2 + 4) / 4^Mod[n + 1, 2]; Table[a[n], {n, 0, 52}] (* Peter Luschny, Mar 18 2022 *)
  • PARI
    vector(60, n, n--; numerator(1+n^2/4)) \\ Michel Marcus, Aug 15 2015
    
  • PARI
    Vec((1+5*x-x^2-2*x^3+2*x^4+5*x^5)/(1-x^2)^3 + O(x^60)) \\ Colin Barker, Aug 15 2015
    
  • PARI
    a(n)=if(n%2,n^2+4,(n/2)^2+1) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    [(n*n+4)//4**((n+1)%2) for n in range(60)] # Gennady Eremin, Mar 18 2022
  • Sage
    [numerator(1+n^2/4) for n in (0..60)] # G. C. Greubel, Feb 09 2019
    

Formula

a(n) = numerator(1 + n^2/4). (Previous name.) See A010685 (denominators).
a(2*k) = 1 + k^2.
a(2*k+1) = 5 + 4*k*(k+1).
a(2*k+1) = 4*a(2*k) + 4*k + 1.
a(4*k+2) = A069894(k). - Paul Curtz, Jan 30 2019
a(-n) = a(n).
a(n+2) = a(n) + A144433(n) (or A195161(n+1)).
a(n) = A168077(n) + period 2: repeat 1, 4.
a(n) = A171621(n) + period 2: repeat 2, 8.
From Colin Barker, Aug 15 2015: (Start)
a(n) = (5 - 3*(-1)^n)*(4 + n^2)/8.
a(n) = n^2/4 + 1 for n even;
a(n) = n^2 + 4 for n odd.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>5.
G.f.: (1 + 5*x - x^2 - 2*x^3 + 2*x^4 + 5*x^5)/ (1 - x^2)^3. (End)
E.g.f.: (5/8)*(x^2 + x + 4)*exp(x) - (3/8)*(x^2 - x + 4)*exp(-x). - Robert Israel, Aug 18 2015
Sum_{n>=0} 1/a(n) = (4*coth(Pi)+tanh(Pi))*Pi/8 + 1/2. - Amiram Eldar, Mar 22 2022

Extensions

New name by Peter Luschny, Mar 18 2022

A144433 Multiples of 8 interleaved with the sequence of odd numbers >= 3.

Original entry on oeis.org

8, 3, 16, 5, 24, 7, 32, 9, 40, 11, 48, 13, 56, 15, 64, 17, 72, 19, 80, 21, 88, 23, 96, 25, 104, 27, 112, 29, 120, 31, 128, 33, 136, 35, 144, 37, 152, 39, 160, 41, 168, 43, 176, 45, 184, 47, 192, 49, 200, 51, 208, 53, 216, 55, 224, 57, 232, 59, 240, 61, 248, 63, 256, 65, 264
Offset: 1

Views

Author

Paul Curtz, Oct 04 2008

Keywords

Comments

For n >= 2, these are the numerators of 1/n^2 - 1/(n+1)^2: A061037(4), A061039(5), A061041(6), A061043(7), A061045(8), A061047(9), A061049(10), etc.

Crossrefs

Cf. A120070.

Programs

Formula

a(2*n+1) = A008590(n+1), a(2*n) = A005408(n).
a(2*n+1) + a(2*n+2) = A017281(n+1).
From R. J. Mathar, Apr 01 2009: (Start)
a(n) = 2*a(n-2) - a(n-4).
G.f.: x*(8+3*x-x^3)/((1-x)^2*(1+x)^2). (End)
a(n) = (n + 1) * 4^(n mod 2). - Wesley Ivan Hurt, Nov 27 2013

Extensions

Edited by R. J. Mathar, Apr 01 2009

A061046 Denominator of 1/36 - 1/n^2.

Original entry on oeis.org

36, 9, 12, 144, 900, 1, 1764, 576, 324, 225, 4356, 48, 6084, 441, 300, 2304, 10404, 81, 12996, 3600, 196, 1089, 19044, 192, 22500, 1521, 2916, 7056, 30276, 75, 34596, 9216, 484, 2601, 44100, 1296, 49284, 3249, 2028, 14400, 60516, 147, 66564, 17424, 8100, 4761, 79524, 256, 86436, 5625, 3468, 24336, 101124, 729, 108900, 28224, 4332, 7569, 125316, 400, 133956, 8649, 15876, 36864, 152100, 363, 161604, 41616, 6348, 11025, 181476, 5184
Offset: 1

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Crossrefs

See A061045 for numerators and further information. Cf. A061035-A061050.

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a061046 = denominator . (1 % 36 -) . recip . (^ 2) . fromIntegral
    -- Reinhard Zumkeller, Jan 06 2014
    
  • Mathematica
    Denominator[1/36-1/Range[80]^2] (* Harvey P. Dale, Feb 06 2012 *)
  • PARI
    for(n=6,50, print1(denominator(1/6^2 - 1/n^2), ", ")) \\ G. C. Greubel, Jul 07 2017

A172157 Triangle T(n,m) = numerator of 1/n^2 - 1/m^2, read by rows, with T(n,0) = -1.

Original entry on oeis.org

-1, -1, -3, -1, -8, -5, -1, -15, -3, -7, -1, -24, -21, -16, -9, -1, -35, -2, -1, -5, -11, -1, -48, -45, -40, -33, -24, -13, -1, -63, -15, -55, -3, -39, -7, -15, -1, -80, -77, -8, -65, -56, -5, -32, -17, -1, -99, -6, -91, -21, -3, -4, -51, -9, -19, -1, -120, -117, -112
Offset: 1

Views

Author

Paul Curtz, Jan 27 2010

Keywords

Comments

The triangle obtained by negating the values of the triangle A120072 and adding a row T(n,0) = -1.

Examples

			The full array of numerators starts in row n=1 with columns m>=0 as:
-1...0...3...8..15..24..35..48..63..80..99. A005563
-1..-3...0...5...3..21...2..45..15..77...6. A061037, A070262
-1..-8..-5...0...7..16...1..40..55...8..91. A061039
-1.-15..-3..-7...0...9...5..33...3..65..21. A061041
-1.-24.-21.-16..-9...0..11..24..39..56...3. A061043
-1.-35..-2..-1..-5.-11...0..13...7...5...4. A061045
-1.-48.-45.-40.-33.-24.-13...0..15..32..51. A061047
-1.-63.-15.-55..-3.-39..-7.-15...0..17...9. A061049
The triangle is the portion below the main diagonal, left from the zeros, 0<=m<n.
		

Crossrefs

Programs

  • Mathematica
    T[n_, 0] := -1; T[n_, k_] := 1/n^2 - 1/k^2; Table[Numerator[T[n, k]], {n, 1, 100}, {k, 0, n - 1}] // Flatten (* G. C. Greubel, Sep 19 2018 *)

A172370 Mirrored triangle A120072 read by rows.

Original entry on oeis.org

3, 5, 8, 7, 3, 15, 9, 16, 21, 24, 11, 5, 1, 2, 35, 13, 24, 33, 40, 45, 48, 15, 7, 39, 3, 55, 15, 63, 17, 32, 5, 56, 65, 8, 77, 80, 19, 9, 51, 4, 3, 21, 91, 6, 99, 21, 40, 57, 72, 85, 96, 105, 112, 117, 120, 23, 11, 7, 5, 95, 1, 119, 1, 5, 35, 143, 25, 48, 69, 88, 105, 120, 133, 144
Offset: 2

Views

Author

Paul Curtz, Feb 01 2010

Keywords

Comments

A table of numerators of 1/n^2 - 1/m^2 extended to negative m looks as follows, stacked such that values of common m are aligned
and the central column of -1 is defined for m=0:
.............................0..-1...0...3...8..15..24..35..48..63..80..99. A005563
.........................0..-3..-1..-3...0...5...3..21...2..45..15..77...6. A061037
.....................0..-5..-8..-1..-8..-5...0...7..16...1..40..55...8..91. A061039
.................0..-7..-3.-15..-1.-15..-3..-7...0...9...5..33...3..65..21. A061041
.............0..-9.-16.-21.-24..-1.-24.-21.-16..-9...0..11..24..39..56...3. A061043
.........0.-11..-5..-1..-2.-35..-1.-35..-2..-1..-5.-11...0..13...7...5...4. A061045
.....0.-13.-24.-33.-40.-45.-48..-1.-48.-45.-40.-33.-24.-13...0..15..32..51. A061047
.0.-15..-7.-39..-3.-55.-15.-63..-1.-63.-15.-55..-3.-39..-7.-15...0..17...9. A061049
The row-reversed variant of A120072 appears (negated) after the leftmost 0.
Equals A061035 with the first column removed. - Georg Fischer, Jul 26 2023

Examples

			The table starts
   3
   5   8
   7   3  15
   9  16  21  24
  11   5   1   2  35
  13  24  33  40  45  48
  15   7  39   3  55  15  63
  17  32   5  56  65   8  77  80
  19   9  51   4   3  21  91   6  99
		

Crossrefs

Lower diagonal gives: A070262, A061037(n+2).

Programs

  • Magma
    [[Numerator(1/(n-k)^2 -1/n^2): k in [1..n-1]]: n in [2..20]]; // G. C. Greubel, Sep 20 2018
  • Mathematica
    Table[Numerator[1/(n-k)^2 -1/n^2], {n, 2, 20}, {k, 1, n-1}]//Flatten (* G. C. Greubel, Sep 20 2018 *)
  • PARI
    for(n=2,20, for(k=1,n-1, print1(numerator(1/(n-k)^2 -1/n^2), ", "))) \\ G. C. Greubel, Sep 20 2018
    

Formula

T(n,m) = numerator of 1/(n-m)^2 - 1/n^2, n >= 2, 1 <= m < n. - R. J. Mathar, Nov 23 2010

Extensions

Comment rewritten and offset set to 2 by R. J. Mathar, Nov 23 2010

A143025 Period length 4: repeat [1, 8, 2, 8].

Original entry on oeis.org

1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8
Offset: 0

Views

Author

Paul Curtz, Oct 13 2008

Keywords

Comments

Numerator of 1/n^2-1/(3n)^2 if n>0.
This can be generated from the transitions between principal quantum numbers n and 3n in the Hydrogen series: A005563(2), A061037(6), A061039(9), A061041(12), A061043(15), A061045(18), A061047(21), A061049(24),... (The mention of A005563(2) is somewhat a fluke to maintain the periodic pattern.)
Related to the continued fraction of (12*sqrt(55)-72)/19 = 0.89444115.. = 0+1/(1+1/(8+1/(2+...))). - R. J. Mathar, Jun 27 2011

Crossrefs

Programs

Formula

a(n+4) = a(n).
G.f.: (1+8*x+2*x^2+8*x^3)/(1-x^4).
From Wesley Ivan Hurt, Jul 10 2016: (Start)
a(n) = (19 - 13*I^(2*n) - I^(-n) - I^n)/4, where I = sqrt(-1).
a(n) = (19 - 2*cos(n*Pi/2) - 13*cos(n*Pi))/4. (End)

Extensions

Partially edited by R. J. Mathar, Dec 10 2008

A171372 a(n) = Numerator of 1/(2*n)^2 - 1/(3*n)^2 for n > 0, a(0) = 1.

Original entry on oeis.org

1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5
Offset: 0

Views

Author

Paul Curtz, Dec 07 2009

Keywords

Comments

The diagonal of a table of numerators of the Rydberg-Ritz spectrum of hydrogen:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
0, 5, 3, 21, 2, 45, 15, 77, 6, 117, 35, ... A061037
0, 9, 5, 33, 3, 65, 21, 105, 1, 153, 45, ... A061041
0, 13, 7, 5, 4, 85, 1, 133, 10, 7, 55, ... A061045
0, 17, 9, 57, 5, 105, 33, 161, 3, 225, 65, ... A061049
0, 21, 11, 69, 6, 1, 39, 189, 14, 261, 3, ...
0, 25, 13, 1, 7, 145, 5, 217, 1, 11, 85, ...
0, 29, 15, 93, 8, 165, 51, 5, 18, 333, 95, ...
0, 33, 17, 105, 9, 185, 57, 273, 5, 369, 105, ...
0, 37, 19, 13, 10, 205, 7, 301, 22, 5, 115, ...
0, 41, 21, 129, 11, 9, 69, 329, 3, 441, 1, ...
In that respect, constructed similar to A144437.

Crossrefs

Cf. A171373 (binomial transform), A171408, A105371.

Programs

  • Magma
    [1] cat [Numerator(5/(6*n)^2): n in [1..100]]; // G. C. Greubel, Sep 20 2018
  • Mathematica
    Table[If[n==0,1,Numerator[5/(6*n)^2]], {n,0,100}] (* G. C. Greubel, Sep 20 2018 *)
  • PARI
    concat([1], vector(100, n, numerator(5/(6*n)^2))) \\ G. C. Greubel, Sep 20 2018
    

Formula

a(n) = numerator of 5/(6*n)^2 .
Period 5: repeat [1,5,5,5,5].
G.f.: (1 + 5*x + 5*x^2 + 5*x^3 + 5*x^4)/((1-x)*(1 + x + x^2 + x^3 + x^4)).
a(n) = 1 + 4*sign(n mod 5). - Wesley Ivan Hurt, Sep 26 2018
a(n) = (21-8*cos(2*n*Pi/5)-8*cos(4*n*Pi/5))/5. - Wesley Ivan Hurt, Sep 27 2018

Extensions

Edited by R. J. Mathar, Dec 15 2009
Showing 1-10 of 11 results. Next