cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A158552 a(n) = A144433(n) - A106833(n).

Original entry on oeis.org

5, -1, 7, -3, 9, -5, 11, -7, 13, -9, 15, -11, 17, -13, 19, -15, 21, -17, 23, -19, 25, -21, 27, -23, 29, -25, 31, -27, 33, -29, 35, -31, 37, -33, 39, -35, 41, -37, 43, -39, 45, -41, 47, -43, 49, -45, 51, -47, 53, -49, 55, -51, 57, -53, 59, -55, 61, -57, 63, -59, 65, -61, 67
Offset: 1

Views

Author

Paul Curtz, Mar 21 2009

Keywords

Crossrefs

Formula

a(n) = A118402(n+3).
From R. J. Mathar, Apr 08 2009: (Start)
G.f.: x*(5+4*x+x^2)/((1-x)*(1+x)^2).
a(n) = -a(n-1) + a(n-2) + a(n-3).
(End)

Extensions

Edited and extended by R. J. Mathar, Apr 08 2009

A152053 a(n) = A144433(3n+1) + A144433(3n+2) + A144433(3n+3).

Original entry on oeis.org

27, 36, 81, 72, 135, 108, 189, 144, 243, 180, 297, 216, 351, 252, 405, 288, 459, 324, 513, 360, 567, 396, 621, 432, 675, 468, 729, 504, 783, 540, 837, 576, 891, 612, 945, 648, 999, 684, 1053, 720, 1107
Offset: 0

Views

Author

Paul Curtz, Nov 22 2008

Keywords

Comments

All terms are multiples of 9.

Crossrefs

Programs

  • Mathematica
    Table[(9/2)(5 + (-1)^n)(n + 1), {n, 0, 40}] (* Jean-François Alcover, Feb 02 2019 *)
    LinearRecurrence[{0,2,0,-1},{27,36,81,72},50] (* Harvey P. Dale, Nov 07 2019 *)
  • PARI
    a(n) = 45*(n+1)/2 + 9*(-1)^n*(n+1)/2 \\ Jianing Song, Feb 04 2019

Formula

From R. J. Mathar, May 21 2009: (Start)
G.f.: 9*(3+4*x+3*x^2)/((x-1)^2*(1+x)^2).
a(n) = 45*(n+1)/2 + 9*(-1)^n*(n+1)/2. (End)
a(n) = 9*A106833(n+1). - Jean-François Alcover, Feb 02 2019, after Paul Curtz
a(n+4) = 2*a(n+2) - a(n). - Jianing Song, Feb 04 2019

Extensions

Edited by R. J. Mathar, May 21 2009

A195161 Multiples of 8 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 8, 3, 16, 5, 24, 7, 32, 9, 40, 11, 48, 13, 56, 15, 64, 17, 72, 19, 80, 21, 88, 23, 96, 25, 104, 27, 112, 29, 120, 31, 128, 33, 136, 35, 144, 37, 152, 39, 160, 41, 168, 43, 176, 45, 184, 47, 192, 49, 200, 51, 208, 53, 216, 55, 224, 57, 232, 59
Offset: 0

Views

Author

Omar E. Pol, Sep 10 2011

Keywords

Comments

A008590 and A005408 interleaved. This is 8*n if n is even, n if n is odd, if n>=0.
Partial sums give the generalized 12-gonal (or dodecagonal) numbers A195162.
The moment generating function of p(x, m=2, n=1, mu=2) = 4*x*E(x, 2, 1), see A163931 and A274181, is given by M(a) = (- 4*log(1-a) - 4 * polylog(2, a))/a^2. The series expansion of M(a) leads to the sequence given above. - Johannes W. Meijer, Jul 03 2016
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 12-gonal numbers. - Omar E. Pol, Jul 27 2018

Crossrefs

Column 8 of A195151.
Sequences whose partial sums give the generalized n-gonal numbers, if n>=5: A026741, A001477, zero together with A080512, A022998, A195140, zero together with A165998, A195159, this sequence, A195312.
Cf. A144433.

Programs

  • Magma
    &cat[[8*n, 2*n+1]: n in [0..30]]; // Vincenzo Librandi, Sep 27 2011
    
  • Maple
    a := proc(n): (6*(-1)^n+10)*n/4 end: seq(a(n), n=0..59); # Johannes W. Meijer, Jul 03 2016
  • Mathematica
    With[{nn=30},Riffle[8*Range[0,nn],2*Range[0,nn]+1]] (* or *) LinearRecurrence[{0,2,0,-1},{0,1,8,3},60] (* Harvey P. Dale, Nov 24 2013 *)
  • PARI
    concat(0, Vec(x*(1+8*x+x^2)/((1-x)^2*(1+x)^2) + O(x^99))) \\ Altug Alkan, Jul 04 2016

Formula

a(2n) = 8n, a(2n+1) = 2n+1. [corrected by Omar E. Pol, Jul 26 2018]
a(n) = (6*(-1)^n+10)*n/4. - Vincenzo Librandi, Sep 27 2011
a(n) = 2*a(n-2)-a(n-4). G.f.: x*(1+8*x+x^2)/((1-x)^2*(1+x)^2). - Colin Barker, Aug 11 2012
From Ilya Gutkovskiy, Jul 03 2016: (Start)
a(m*2^k) = m*2^(k+2), k>0.
E.g.f.: x*(4*sinh(x) + cosh(x)).
Dirichlet g.f.: 2^(-s)*(2^s + 6)*zeta(s-1). (End)
Multiplicative with a(2^e) = 4*2^e, a(p^e) = p^e for odd prime p. - Andrew Howroyd, Jul 23 2018
a(n) = A144433(n-1) for n > 1. - Georg Fischer, Oct 14 2018

A261327 a(n) = (n^2 + 4) / 4^((n + 1) mod 2).

Original entry on oeis.org

1, 5, 2, 13, 5, 29, 10, 53, 17, 85, 26, 125, 37, 173, 50, 229, 65, 293, 82, 365, 101, 445, 122, 533, 145, 629, 170, 733, 197, 845, 226, 965, 257, 1093, 290, 1229, 325, 1373, 362, 1525, 401, 1685, 442, 1853, 485, 2029, 530, 2213, 577, 2405, 626, 2605, 677
Offset: 0

Views

Author

Paul Curtz, Aug 15 2015

Keywords

Comments

Using (n+sqrt(4+n^2))/2, after the integer 1 for n=0, the reduced metallic means are b(1) = (1+sqrt(5))/2, b(2) = 1+sqrt(2), b(3) = (3+sqrt(13))/2, b(4) = 2+sqrt(5), b(5) = (5+sqrt(29))/2, b(6) = 3+sqrt(10), b(7) = (7+sqrt(53))/2, b(8) = 4+sqrt(17), b(9) = (9+sqrt(85))/2, b(10) = 5+sqrt(26), b(11) = (11+sqrt(125))/2 = (11+5*sqrt(5))/2, ... . The last value yields the radicals in a(n) or A013946.
b(2) = 2.41, b(3) = 3.30, b(4) = 4.24, b(5) = 5.19 are "good" approximations of fractal dimensions corresponding to dimensions 3, 4, 5, 6: 2.48, 3.38, 4.33 and 5.45 based on models. See "Arbres DLA dans les espaces de dimension supérieure: la théorie des peaux entropiques" in Queiros-Condé et al. link. DLA: beginning of the title of the Witten et al. link.
Consider the symmetric array of the half extended Rydberg-Ritz spectrum of the hydrogen atom:
0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, ...
-1/0, 0, 3/4, 8/9, 15/16, 24/25, 35/36, 48/49, ...
-1/0, -3/4, 0, 5/36, 3/16, 21/100, 2/9, 45/196, ...
-1/0, -8/9, -5/36, 0, 7/144, 16/225, 1/12, 40/441, ...
-1/0, -15/16, -3/16, -7/144, 0, 9/400, 5/144, 33/784, ...
-1/0, -24/25, -21/100, -16/225, -9/400, 0, 11/900, 24/1225, ...
-1/0, -35/36, -2/9, -1/12, -5/144, -11/900, 0, 13/1764, ...
-1/0, -48/49, -45/196, -40/441, -33/784, -24/1225, -13/1764, 0, ... .
The numerators are almost A165795(n).
Successive rows: A000007(n)/A057427(n), A005563(n-1)/A000290(n), A061037(n)/A061038(n), A061039(n)/A061040(n), A061041(n)/A061042(n), A061043(n)/A061044(n), A061045(n)/A061046(n), A061047(n)/A061048(n), A061049(n)/A061050(n).
A144433(n) or A195161(n+1) are the numerators of the second upper diagonal (denominators: A171522(n)).
c(n+1) = a(n) + a(n+1) = 6, 7, 15, 18, 34, 39, 63, 70, 102, 111, ... .
c(n+3) - c(n+1) = 9, 11, 19, 21, 29, 31, ... = A090771(n+2).
The final digit of a(n) is neither 4 nor 8. - Paul Curtz, Jan 30 2019

Crossrefs

Programs

  • Magma
    [Numerator(1+n^2/4): n in [0..60]]; // Vincenzo Librandi, Aug 15 2015
    
  • Maple
    A261327:=n->numer((4 + n^2)/4); seq(A261327(n), n=0..60); # Wesley Ivan Hurt, Aug 15 2015
  • Mathematica
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 5, 2, 13, 5, 29}, 60] (* Vincenzo Librandi, Aug 15 2015 *)
    a[n_] := (n^2 + 4) / 4^Mod[n + 1, 2]; Table[a[n], {n, 0, 52}] (* Peter Luschny, Mar 18 2022 *)
  • PARI
    vector(60, n, n--; numerator(1+n^2/4)) \\ Michel Marcus, Aug 15 2015
    
  • PARI
    Vec((1+5*x-x^2-2*x^3+2*x^4+5*x^5)/(1-x^2)^3 + O(x^60)) \\ Colin Barker, Aug 15 2015
    
  • PARI
    a(n)=if(n%2,n^2+4,(n/2)^2+1) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    [(n*n+4)//4**((n+1)%2) for n in range(60)] # Gennady Eremin, Mar 18 2022
  • Sage
    [numerator(1+n^2/4) for n in (0..60)] # G. C. Greubel, Feb 09 2019
    

Formula

a(n) = numerator(1 + n^2/4). (Previous name.) See A010685 (denominators).
a(2*k) = 1 + k^2.
a(2*k+1) = 5 + 4*k*(k+1).
a(2*k+1) = 4*a(2*k) + 4*k + 1.
a(4*k+2) = A069894(k). - Paul Curtz, Jan 30 2019
a(-n) = a(n).
a(n+2) = a(n) + A144433(n) (or A195161(n+1)).
a(n) = A168077(n) + period 2: repeat 1, 4.
a(n) = A171621(n) + period 2: repeat 2, 8.
From Colin Barker, Aug 15 2015: (Start)
a(n) = (5 - 3*(-1)^n)*(4 + n^2)/8.
a(n) = n^2/4 + 1 for n even;
a(n) = n^2 + 4 for n odd.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>5.
G.f.: (1 + 5*x - x^2 - 2*x^3 + 2*x^4 + 5*x^5)/ (1 - x^2)^3. (End)
E.g.f.: (5/8)*(x^2 + x + 4)*exp(x) - (3/8)*(x^2 - x + 4)*exp(-x). - Robert Israel, Aug 18 2015
Sum_{n>=0} 1/a(n) = (4*coth(Pi)+tanh(Pi))*Pi/8 + 1/2. - Amiram Eldar, Mar 22 2022

Extensions

New name by Peter Luschny, Mar 18 2022

A168068 Array T(n,k) read by antidiagonals: T(n,2k+1) = 2k+1. T(n,2k) = 2^n*k.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 4, 3, 2, 0, 1, 8, 3, 4, 5, 0, 1, 16, 3, 8, 5, 3, 0, 1, 32, 3, 16, 5, 6, 7, 0, 1, 64, 3, 32, 5, 12, 7, 4, 0, 1, 128, 3, 64, 5, 24, 7, 8, 9, 0, 1, 256, 3, 128, 5, 48, 7, 16, 9, 5, 0, 1, 512, 3, 256, 5, 96, 7, 32, 9, 10, 11, 0, 1, 1024, 3, 512, 5, 192, 7, 64, 9, 20, 11, 6, 0, 1, 2048, 3, 1024, 5
Offset: 0

Views

Author

Paul Curtz, Nov 18 2009

Keywords

Comments

The array is constructed multiplying the even-indexed A026741(k) by 2^n, and keeping the odd-indexed A026471(k) as they are.
Connections to the hydrogen spectrum: The squares of the second row are T(1,k)^2 = A001477(k)^2 = A000290(k) which are the denominators of the Lyman lines (see A171522). The squares of the row T(2,k) are in A154615, denominators of the Balmer series. Row T(3,k) is related to A106833 and A061038.

Examples

			The array starts in row n=0 with columns k>=0 as:
0,1,1,3,2,5,3,7,4, A026741
0,1,2,3,4,5,6,7,8, A001477
0,1,4,3,8,5,12,7,16, A022998
0,1,8,3,16,5,24,7,32, A144433
0,1,16,3,32,5,48,7,64,
0,1,32,3,64,5,96,7,128,
		

Programs

  • Maple
    A168068 := proc(n,k) if type(k,'odd') then k; else 2^(n-1)*k ; end if; end proc: # R. J. Mathar, Jan 22 2011

A280579 Square array read by antidiagonals downwards giving the first differences A261327(n+p) - A261327(n), with p >= 0.

Original entry on oeis.org

0, 0, 4, 0, -3, 1, 0, 11, 8, 12, 0, -8, 3, 0, 4, 0, 24, 16, 27, 24, 28, 0, -19, 5, -3, 8, 5, 9, 0, 43, 24, 48, 40, 51, 48, 52, 0, -36, 7, -12, 12, 4, 15, 12, 16, 0, 68, 32, 75, 56, 80, 72, 83, 80, 84, 0, -59, 9, -27
Offset: 0

Views

Author

Paul Curtz, Jan 05 2017

Keywords

Comments

Successive rows:
p
0: 0, 0, 0, 0, 0, 0, 0, ...
1: 4, -3, 11, -8, 24, -19, 43, ...
2: 1, 8, 3, 16, 5, 24, 7, ...
3: 12, 0, 27, -3, 48, -12, 75, ...
4: 4, 24, 8, 40, 12, 56, 16, ...
5: 28, 5, 51, 4, 80, -3, 115, ...
6: 9, 48, 15, 72, 21, 96, 27, ...
... .
Main diagonal: alternate 3*n^2, -3.
From p>0, the rows are multiples of 1, 1, 3, 4, 1, 3, 1, 8, 3, 5, 1, 12, 1, 7, 3, 16, 1, ... . Sequences appearing after division: shifted A144433 or A195161, A064680. For p=3, we have (n+2)^2, -n^2.
First column: alternate n^2, 4*(n^2 + n + 1). Its first differences (4, -3, 11, -8, 24, ...) is the sequence of the square array for p=1.
Third column: 0, 3, 8, 15, ... is A005563(n).
Fifth column: 5, 21, 45, 77, ... is a bisection of A061037(n).
Seventh column: 7, 16, 40, 55, 91, 112, ... is a subsequence of A061039(n).
Etc. From the Rydberg spectra of the hydrogen atom (mentioned in A261327).
Starting for instance from p=-3,at the main antidiagonal,yields:
-3: -12, 0, -27, 3, ... see p=3
-2: -1, -8, -3, -16, -5, ... p=2
-1: -4, 3, -11, 8, -24, 19, ... p=1.

Crossrefs

A281098 a(n) is the GCD of the sequence d(n) = A261327(k+n) - A261327(k) for all k.

Original entry on oeis.org

0, 1, 1, 3, 4, 1, 3, 1, 8, 3, 5, 1, 12, 1, 7, 3, 16, 1, 9, 1, 20, 3, 11, 1, 24, 1, 13, 3, 28, 1, 15, 1, 32, 3, 17, 1, 36, 1, 19, 3, 40, 1, 21, 1, 44, 3, 23, 1, 48, 1, 25, 3, 52, 1, 27, 1, 56, 3, 29, 1, 60, 1, 31, 3, 64, 1, 33, 1, 68, 3, 35, 1, 72, 1, 37, 3, 76, 1, 39, 1
Offset: 0

Views

Author

Paul Curtz, Jan 14 2017

Keywords

Comments

Successive sequences:
0: 0, 0, 0, 0, ... = 0 * ( )
1: 4, -3, 11, -8, ... = 1 * ( )
2: 1, 8, 3, 16, ... = 1 * ( ) A195161
3: 12, 0, 27, -3, ... = 3 * (4, 0, 9, -1, ...)
4: 4, 24, 8, 40, ... = 4 * (1, 6, 2, 10, ...) A064680
5; 28, 5, 51, 4, ... = 1 * ( )
6: 9, 48, 15, 72, ... = 3 * (3, 16, 5, 24, ...) A195161
7: 52, 12, 83, 13, ... = 1 * ( )
8: 16, 80, 24, 112, ... = 8 * (2, 10, 3, 14, ...) A064080
9: 84 21, 123, 24, ... = 3 * (28, 7, 41, 8, ...)
10: 25, 120, 35, 160, ... = 5 * (5, 24, 7, 32, ...) A195161

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(-x (-1 - x - 4 x^2 - 5 x^3 - 3 x^4 - 6 x^5 + 3 x^6 - 5 x^7 + 4 x^8 - x^9 + x^10))/((x^2 - x + 1) (1 + x + x^2) (x - 1)^2*(1 + x)^2*(1 + x^2)^2), {x, 0, 79}], x] (* Michael De Vlieger, Feb 02 2017 *)
  • PARI
    f(n) = numerator((4 + n^2)/4);
    a(n) = gcd(vector(1000, k, f(k+n) - f(k))); \\ Michel Marcus, Jan 15 2017
    
  • PARI
    A281098(n) = if(n%2, gcd((n\2)-1,3), n>>(bitand(n,2)/2)); \\ Antti Karttunen, Feb 15 2023

Formula

G.f.: -x*( -1 - x - 4*x^2 - 5*x^3 - 3*x^4 - 6*x^5 + 3*x^6 - 5*x^7 + 4*x^8 - x^9 + x^10 )/( (x^2 - x + 1)*(1 + x + x^2)*(x - 1)^2*(1 + x)^2*(1 + x^2)^2 ). - R. J. Mathar, Jan 31 2017
a(2*k) = A022998(k).
a(2*k+1) = A109007(k-1).
a(3*k) = interleave 3*k*(3 +(-1)^k)/2, 3.
a(3*k+1) = interleave 1, A166304(k).
a(3*k+2) = interleave A166138(k), 1.
a(4*k) = 4*k.
a(4*k+1) = period 3: repeat [1, 1, 3].
a(4*k+2) = 1 + 2*k.
a(4*k+3) = period 3: repeat [3, 1, 1].
a(n+12) - a(n) = 6*A131743(n+3).
a(n) = (18*n + 40 - 16*cos(n*Pi/3) + 9*n*cos(n*Pi/2) + 32*cos(2*n*Pi/3) + (18*n - 40)*cos(n*Pi) + 3*n*cos(3*n*Pi/2) - 16*cos(5*n*Pi/3))/48. - Wesley Ivan Hurt, Oct 04 2018

Extensions

Corrected and extended by Michel Marcus, Jan 15 2017
Showing 1-7 of 7 results.