cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 45 results. Next

A319647 a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^sigma_n(k).

Original entry on oeis.org

1, 1, 6, 38, 526, 13074, 702813, 70939556, 13879861574, 5583837482767, 4393101918607162, 6717450870069292051, 21057681806321501744772, 131246096280071506595491449, 1604095619160115980216291007253, 40299198842857238408636666363954678, 2031474817845087309816967328335309651478
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 26 2018

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*
          sigma[k](d), d=divisors(j))*b(n-j, k), j=1..n)/n)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 26 2018
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^k)^DivisorSigma[n, k], {k, 1, n}], {x, 0, n}], {n, 0, 16}]
    Table[SeriesCoefficient[Product[Product[1/(1 - x^(i j))^(j^n), {j, 1, n}], {i, 1, n}], {x, 0, n}], {n, 0, 16}]
    Table[SeriesCoefficient[Exp[Sum[DivisorSigma[n + 1, k] x^k/(k (1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 16}]
  • PARI
    {a(n) = polcoeff(prod(k=1, n, 1/(1-x^k+x*O(x^n))^sigma(k, n)), n)} \\ Seiichi Manyama, Oct 27 2018

Formula

a(n) = [x^n] Product_{i>=1, j>=1} 1/(1 - x^(i*j))^(j^n).
a(n) = [x^n] exp(Sum_{k>=1} sigma_(n+1)(k)*x^k/(k*(1 - x^k))).

A280540 G.f.: Product_{i>=1, j>=1} 1/(1 - x^(i*j))^(i*j).

Original entry on oeis.org

1, 1, 5, 11, 33, 67, 180, 366, 871, 1782, 3927, 7885, 16637, 32763, 66469, 128938, 253871, 484034, 930959, 1747304, 3292730, 6092664, 11282364, 20596790, 37568653, 67736175, 121886533, 217261372, 386216073, 681119439, 1197524035, 2091091902, 3639519280
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 05 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^(i*j))^(i*j), {i, 1, nmax}, {j, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; s = 1 - x; Do[s *= Sum[Binomial[k*DivisorSigma[0, k], j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2018 *)

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*d(k)), where d(k) = number of divisors of k (A000005). - Ilya Gutkovskiy, Aug 26 2018
log(a(n)) ~ (3/2)^(2/3) * Zeta(3)^(1/3) * log(n)^(1/3) * n^(2/3). - Vaclav Kotesovec, Aug 28 2018

A280541 G.f.: Product_{i>=1, j>=1} (1 + x^(i*j))^(i*j).

Original entry on oeis.org

1, 1, 4, 10, 24, 52, 125, 253, 549, 1126, 2290, 4525, 8987, 17259, 33174, 62669, 117425, 217295, 399904, 726984, 1314257, 2354807, 4191671, 7405590, 13009916, 22696115, 39384232, 67937488, 116584833, 199001304, 338076500, 571507377, 961855945, 1611567819
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 05 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(i*j))^(i*j), {i, 1, nmax}, {j, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; s = 1 + x; Do[s *= Sum[Binomial[k*DivisorSigma[0, k], j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[s, x] (* Vaclav Kotesovec, Aug 27 2018 *)

Formula

G.f.: Product_{k>=1} (1 + x^k)^(k*d(k)), where d(k) = number of divisors of k (A000005). - Ilya Gutkovskiy, Aug 26 2018
Conjecture: log(a(n)) ~ 3 * Zeta(3)^(1/3) * log(n)^(1/3) * n^(2/3) / 2^(4/3). - Vaclav Kotesovec, Aug 29 2018

A301555 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(sigma(k)).

Original entry on oeis.org

1, 2, 8, 22, 62, 154, 392, 914, 2136, 4776, 10544, 22626, 47982, 99538, 204100, 411714, 821130, 1616170, 3148812, 6066338, 11579954, 21893214, 41045780, 76306030, 140783060, 257789064, 468783092, 846697340, 1519599658, 2710476106, 4806507720, 8475250510
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Comments

Convolution of A061256 and A192065.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^DivisorSigma[1, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp((3*Pi)^(2/3) * (7*Zeta(3))^(1/3) * n^(2/3) / 2^(5/3) - 3^(1/3) * Pi^(4/3) * n^(1/3) / (2^(7/3) * (7*Zeta(3))^(1/3)) - 1/24 - Pi^2 / (224 * Zeta(3))) * A^(1/2) * (7*Zeta(3))^(11/72) / (2^(13/18) * 3^(47/72) * Pi^(11/72) * n^(47/72)), where A is the Glaisher-Kinkelin constant A074962.
G.f.: Product_{i>=1, j>=1} ((1 + x^(i*j))/(1 - x^(i*j)))^i. - Ilya Gutkovskiy, Aug 29 2018

A320778 Inverse Euler transform of the Euler totient function phi = A000010.

Original entry on oeis.org

1, 1, 0, 1, 0, 2, -3, 4, -4, 4, -9, 14, -19, 30, -42, 50, -76, 128, -194, 286, -412, 598, -909, 1386, -2100, 3178, -4763, 7122, -10758, 16414, -25061, 38056, -57643, 87568, -133436, 203618, -311128, 475536, -726355, 1109718, -1697766, 2601166, -3987903, 6114666
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Number theoretical functions: A000005, A000010, A000203, A001055, A001221, A001222, A008683, A010054.
Inverse Euler transforms: A059966, A320767, A320776, A320777, A320779, A320780, A320781, A320782.

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-Totient(n))):
    seq(a(n), n = 0..43); # Peter Luschny, Nov 21 2022
  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[Array[EulerPhi,30]]

A301542 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_4(k)).

Original entry on oeis.org

1, 1, 18, 100, 526, 2546, 12953, 60929, 282194, 1265959, 5580958, 24057117, 101922204, 424244720, 1739362261, 7027590168, 28017627428, 110295521903, 429110693519, 1650961520518, 6285554480496, 23693047787961, 88469251486817, 327380976530282, 1201122749057307
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Crossrefs

Product_{k>=1} 1/(1 - x^k)^sigma_m(k): A006171 (m=0), A061256 (m=1), A275585 (m=2), A288391 (m=3), this sequence (m=4), A301543 (m=5), A301544 (m=6), A301545 (m=7), A301546 (m=8), A301547 (m=9).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[4, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2^(3/2) * 3^(2/3) * Pi * (Zeta(5)/7)^(1/6) * n^(5/6)/5 + Pi * (7/Zeta(5))^(1/6) * n^(1/6) / (240 * sqrt(2) * 3^(2/3)) - 3*Zeta(5) / (8*Pi^4)) * Zeta(5)^(1/12) / (2^(3/4) * 3^(2/3) * 7^(1/12) * n^(7/12)).
G.f.: exp(Sum_{k>=1} sigma_5(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018

A301543 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_5(k)).

Original entry on oeis.org

1, 1, 34, 278, 1896, 13074, 92442, 607200, 3866890, 24062327, 146637082, 873517399, 5101981085, 29274370913, 165261721720, 918756928198, 5035250026792, 27229238821726, 145412875008092, 767414597651951, 4004930689994100, 20679955170511834, 105711772783426512
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Crossrefs

Product_{k>=1} 1/(1 - x^k)^sigma_m(k): A006171 (m=0), A061256 (m=1), A275585 (m=2), A288391 (m=3), A301542 (m=4), this sequence (m=5), A301544 (m=6), A301545 (m=7), A301546 (m=8), A301547 (m=9).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[5, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp((7*Pi)^(6/7) * (Zeta(7)/3)^(1/7) * n^(6/7) / (3*2^(3/7)) - Zeta'(-5)/2) * (Zeta(7)/(3*Pi))^(251/3528) / (2^(251/1176) * 7^(2015/3528) * n^(2015/3528)).
G.f.: exp(Sum_{k>=1} sigma_6(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018

A301544 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_6(k)).

Original entry on oeis.org

1, 1, 66, 796, 7102, 70178, 702813, 6439533, 56938814, 495807251, 4218728690, 34991240657, 284295574638, 2269120791410, 17804772970005, 137455131596032, 1045354069608726, 7839809431539193, 58027706392726849, 424187792875896932, 3064539107659680502
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Crossrefs

Product_{k>=1} 1/(1 - x^k)^sigma_m(k): A006171 (m=0), A061256 (m=1), A275585 (m=2), A288391 (m=3), A301542 (m=4), A301543 (m=5), this sequence (m=6), A301545 (m=7), A301546 (m=8), A301547 (m=9).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[6, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(8 * 2^(3/8) * Pi * (Zeta(7)/15)^(1/8) * n^(7/8)/7 - Pi*(5/Zeta(7))^(1/8) * n^(1/8) / (504 * 2^(3/8) * 3^(7/8)) + 45*Zeta(7) / (16*Pi^6)) * Zeta(7)^(1/16) / (2^(29/16) * 15^(1/16) * n^(9/16)).
G.f.: exp(Sum_{k>=1} sigma_7(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018

A301547 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_9(k)).

Original entry on oeis.org

1, 1, 514, 20198, 414696, 12465714, 373679122, 9181285000, 224372879810, 5583837482767, 132433701077938, 3028947042351535, 68425900639083569, 1518510622688185301, 32936878700790531296, 701684036762210944310, 14726705417058058788172, 304326729686784847885978
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Crossrefs

Cf. A006171 (m=0), A061256 (m=1), A275585 (m=2), A288391 (m=3), A301542 (m=4), A301543 (m=5), A301544 (m=6), A301545 (m=7), A301546 (m=8).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          sigma[9](d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 26 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[9, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp((11*Pi)^(10/11) * (Zeta(11)/3)^(1/11) * n^(10/11) / (2^(3/11) * 5^(10/11)) - Zeta'(-9)/2) * (5*Zeta(11)/(3*Pi))^(131/2904) / (2^(131/968) * 11^(1583/2904) * n^(1583/2904)).
G.f.: exp(Sum_{k>=1} sigma_10(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018

A320767 Inverse Euler transform applied once to {1,-1,0,0,0,...}, twice to {1,0,0,0,0,...}, or three times to {1,1,1,1,1,...}.

Original entry on oeis.org

1, 1, -2, 1, -1, 2, -3, 4, -5, 8, -13, 18, -25, 40, -62, 90, -135, 210, -324, 492, -750, 1164, -1809, 2786, -4305, 6710, -10460, 16264, -25350, 39650, -62057, 97108, -152145, 238818, -375165, 589520, -927200, 1459960, -2300346, 3626200, -5720274, 9030450
Offset: 0

Views

Author

Gus Wiseman, Oct 20 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Programs

  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    Nest[EulerInvTransform,Array[DiscreteDelta,50,0],2]
Previous Showing 11-20 of 45 results. Next