cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 45 results. Next

A327066 Expansion of Product_{k>=1} (Product_{j=1..k} 1/(1 - x^(k*j))^j).

Original entry on oeis.org

1, 1, 2, 3, 7, 9, 17, 23, 41, 58, 93, 127, 205, 281, 423, 583, 869, 1180, 1716, 2322, 3317, 4479, 6282, 8406, 11696, 15589, 21343, 28325, 38480, 50756, 68307, 89688, 119725, 156586, 207449, 269921, 355530, 460804, 602816, 778281, 1012956, 1302481, 1686418
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[Product[1/(1-x^(k*j))^j, {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A327067 Expansion of Product_{k>=1} (Product_{j=1..k} 1/(1 - x^(k*j))^k).

Original entry on oeis.org

1, 1, 3, 6, 15, 26, 57, 101, 202, 358, 670, 1165, 2113, 3614, 6326, 10691, 18275, 30408, 50969, 83716, 137943, 223883, 363547, 583369, 935524, 1485673, 2355496, 3705275, 5815497, 9066696, 14100325, 21802824, 33622951, 51592978, 78949673, 120278899, 182742752
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[1/(1-x^(k*j))^k, {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A327068 Expansion of Product_{k>=1} (Product_{j=1..k} 1/(1 - x^(k*j))^(k*j)).

Original entry on oeis.org

1, 1, 3, 6, 17, 28, 66, 116, 248, 441, 867, 1516, 2894, 5015, 9138, 15724, 27954, 47428, 82421, 138380, 235910, 392040, 657590, 1081225, 1789550, 2914500, 4763562, 7689071, 12433581, 19897139, 31862226, 50583981, 80285138, 126509709, 199167763, 311620226
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[1/(1-x^(k*j))^(k*j), {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A362826 Array read by antidiagonals: T(n,k) is the number of k-tuples of permutations of [n] which commute, divided by n!, n >= 0, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 8, 8, 5, 1, 1, 1, 16, 21, 21, 7, 1, 1, 1, 32, 56, 84, 39, 11, 1, 1, 1, 64, 153, 331, 206, 92, 15, 1, 1, 1, 128, 428, 1300, 1087, 717, 170, 22, 1, 1, 1, 256, 1221, 5111, 5832, 5512, 1810, 360, 30, 1
Offset: 0

Views

Author

Andrew Howroyd, May 09 2023

Keywords

Comments

T(n,k) is also the number of nonisomorphic (k-1)-tuples of permutations of an n-set that pairwise commute. Isomorphism is up to permutation of the elements of the n-set.

Examples

			Array begins:
=======================================================
n/k| 1  2   3    4     5       6        7         8 ...
---+---------------------------------------------------
0  | 1  1   1    1     1       1        1         1 ...
1  | 1  1   1    1     1       1        1         1 ...
2  | 1  2   4    8    16      32       64       128 ...
3  | 1  3   8   21    56     153      428      1221 ...
4  | 1  5  21   84   331    1300     5111     20144 ...
5  | 1  7  39  206  1087    5832    31949    178486 ...
6  | 1 11  92  717  5512   42601   333012   2635637 ...
7  | 1 15 170 1810 19252  208400  2303310  25936170 ...
8  | 1 22 360 5462 81937 1241302 19107225 299002252 ...
  ...
		

Crossrefs

Columns k=1..4 are A000012, A000041, A061256, A226313.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    M(n, m=n)={my(v=vector(m), u=vector(n, n, n==1)); for(j=1, #v, v[j]=concat([1], EulerT(u))~; u=dirmul(u, vector(n, n, n^(j-1)))); Mat(v)}
    { my(A=M(8)); for(n=1, #A~, print(A[n, ])) }

Formula

Column k is the Euler transform of column k-1 of A160870.
T(n,k) = A362827(n,k) / n!.
G.f. of column k: exp(Sum_{i>=1} x^i*A160870(i,k)/i).
G.f. of column k > 1: 1/(Product_{i>=1} (1 - x^i)^A160870(i,k-1)).

A006908 Number of nonzero elements in the character table of the symmetric group S_n.

Original entry on oeis.org

1, 4, 8, 21, 39, 92, 170, 331, 593, 1176, 2118, 3699, 6658, 11347, 19760, 32746, 54854, 90245, 149906, 237953, 387937, 608531, 970912, 1510331, 2380015, 3610620, 5634251, 8474110, 12934092, 19440955, 29291690, 43233800, 64825830, 94779612, 139820232
Offset: 1

Views

Author

Keywords

Comments

John McKay (email to N. J. A. Sloane, Apr 23 2013) observes that A061256 and A006908 coincide for a surprising number of terms, and asks for an explanation. - N. J. A. Sloane, May 19 2013

References

  • J. McKay, personal communication to N. J. A. Sloane, circa 1991.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    A006908 := n -> Sum(Irr(CharacterTable("Symmetric", n)), chi -> Number(chi, x->x<>0)); # Eric M. Schmidt, Jul 13 2012, revised Sep 05 2012
  • Mathematica
    a[n_] := Count[FiniteGroupData[{"SymmetricGroup", n}, "CharacterTable"], k_ /; k != 0, 2]; Array[a, 10] (* Jean-François Alcover, Oct 21 2016 *)

Extensions

More terms from Eric M. Schmidt, Jul 13 2012

A316961 Expansion of Product_{k>=1} 1/(1 - sigma(k)*x^k), where sigma(k) is the sum of the divisors of k (A000203).

Original entry on oeis.org

1, 1, 4, 8, 24, 42, 118, 208, 524, 961, 2191, 3994, 9020, 16142, 34500, 62814, 130496, 234474, 478334, 855982, 1712012, 3061230, 6003546, 10689178, 20783796, 36789875, 70540531, 124812892, 237022708, 417422168, 786509778, 1381137702, 2583046168, 4526024200, 8402928681
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 17 2018

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): a:=series(mul(1/(1-sigma(k)*x^k),k=1..100),x=0,35): seq(coeff(a,x,n),n=0..34); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 34; CoefficientList[Series[Product[1/(1 - DivisorSigma[1, k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 34; CoefficientList[Series[Exp[Sum[Sum[DivisorSigma[1, j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d DivisorSigma[1, d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 34}]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} sigma(j)^k*x^(j*k)/k).
From Vaclav Kotesovec, Jul 28 2018: (Start)
a(n) ~ c * 3^(n/2), where
c = 133.83151651318934683776776253692818185240361972305... if n is even and
c = 131.63961163168586786976253326691345807212512512772... if n is odd.
In closed form, a(n) ~ ((3 + sqrt(3)) * Product_{k>=3} (1/(1 - sigma(k) / 3^(k/2))) + (-1)^n * (3 - sqrt(3)) * Product_{k>=3} (1/(1 - (-1)^k * sigma(k) / 3^(k/2)))) * 3^(n/2) / 4. (End)

A318811 Expansion of e.g.f. exp(Sum_{k>=1} phi(k)*x^k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 1, 3, 19, 121, 1161, 9931, 124363, 1542129, 21594961, 335083411, 5712781251, 104044684393, 2036445474649, 42781075481691, 943820382272251, 22433542236603361, 556276331238284193, 14612462927067954979, 401110580118493111411, 11553483337639043003481
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 04 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[Sum[EulerPhi[k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, eulerphi(k)*x^k)))) \\ Seiichi Manyama, Apr 07 2022
    
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*eulerphi(k)*a(n-k)/(n-k)!)); \\ Seiichi Manyama, Apr 07 2022

Formula

a(n) ~ 2^(1/3) * exp(1/6 + 3^(4/3) * n^(2/3) / (2^(1/3) * Pi^(2/3)) - n) * n^(n - 1/6) / (3*Pi)^(1/3).
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} k * phi(k) * a(n-k)/(n-k)!. - Seiichi Manyama, Apr 07 2022

A321876 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 - x^j)^sigma_k(j).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 4, 5, 1, 1, 6, 8, 11, 1, 1, 10, 16, 21, 17, 1, 1, 18, 38, 52, 39, 34, 1, 1, 34, 100, 156, 128, 92, 52, 1, 1, 66, 278, 526, 534, 373, 170, 94, 1, 1, 130, 796, 1896, 2546, 2014, 913, 360, 145, 1, 1, 258, 2318, 7102, 13074, 12953, 6796, 2399, 667, 244
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 20 2018

Keywords

Examples

			Square array begins:
   1,   1,    1,    1,     1,      1,  ...
   1,   1,    1,    1,     1,      1,  ...
   3,   4,    6,   10,    18,     34,  ...
   5,   8,   16,   38,   100,    278,  ...
  11,  21,   52,  156,   526,   1896,  ...
  17,  39,  128,  534,  2546,  13074,  ...
		

Crossrefs

Main diagonal gives A319647.
Cf. A321877.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[1/(1 - x^j)^DivisorSigma[k, j], {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 10}, {n, 0, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Exp[Sum[DivisorSigma[k + 1, j] x^j/(j (1 - x^j)), {j, 1, n}]], {x, 0, n}]][i - n], {i, 0, 10}, {n, 0, i}] // Flatten

Formula

G.f. of column k: Product_{i>=1, j>=1} 1/(1 - x^(i*j))^(j^k).
G.f. of column k: exp(Sum_{j>=1} sigma_(k+1)(j)*x^j/(j*(1 - x^j))).

A318483 Expansion of Product_{k>=1} 1/(1 - k*x^k)^sigma(k), where sigma = A000203.

Original entry on oeis.org

1, 1, 7, 19, 71, 173, 583, 1443, 4255, 10648, 28929, 71159, 184740, 445626, 1110122, 2638328, 6369490, 14870194, 35031627, 80465028, 185556696, 419916149, 950785580, 2121471778, 4727971847, 10412230698, 22876886529, 49776871862, 107974178843, 232302695301
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-k*x^k)^DivisorSigma[1, k], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; s = 1 - x; Do[s *= Sum[Binomial[DivisorSigma[1, k], j]*(-1)^j*k^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x]

Formula

a(n) ~ c * n^3 * 3^(n/3), where
c = 280631952508395331283883354935233682635.581151020... if mod(n,3)=0
c = 280631952508395331283883354935233682635.059082354... if mod(n,3)=1
c = 280631952508395331283883354935233682635.088610121... if mod(n,3)=2
In closed form, c = (Product_{k>=4}((1 - k/3^(k/3))^(-sigma(k)))/(18*(57 - 90*3^(1/3) + 35*3^(2/3)))) - Product_{k>=4}((1 + ((-1)^(1 + 2*k/3)*k)/3^(k/3))^(-sigma(k)))/ ((-1)^(2*n/3)*(6*(3 + 2*(-3)^(1/3))^3*(-3 + (-3)^(2/3)))) - ((-1)^(1 - (4*n)/3)*Product_{k>=4}((1 + ((-1)^(1 + 4*k/3)*k)/3^(k/3))^(-sigma(k))))/(486*(1 + (-1/3)^(1/3))* (1 - 2*(-1/3)^(2/3))^3)

A326830 Expansion of Product_{i>=2, j>=2} 1 / (1 - x^(i*j))^j.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 5, 0, 9, 3, 17, 0, 46, 6, 68, 23, 153, 27, 297, 67, 534, 188, 978, 276, 1932, 620, 3250, 1313, 6033, 2246, 10854, 4361, 18776, 8639, 32831, 14835, 58230, 27635, 98052, 50980, 169522, 88243, 289720, 157179, 486232, 280206, 818006, 478014
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 20 2019

Keywords

Comments

Euler transform of A048050.
Convolution of A326830 and A002865 is A318784. - Vaclav Kotesovec, Oct 26 2019

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<4, 0, sigma(n)-1-n) end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*b(d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 20 2019
  • Mathematica
    nmax = 47; CoefficientList[Series[Product[1/(1 - x^k)^(DivisorSigma[1, k] - k - 1), {k, 2, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[If[d == 1, 0, d (DivisorSigma[1, d] - d - 1)], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 47}]

Formula

G.f.: Product_{k>=1} 1 / (1 - x^k)^A048050(k).
G.f.: exp(Sum_{k>=1} (A001001(k) - A000203(k) - A001157(k) + 1) * x^k / k).
a(n) ~ exp(3^(2/3) * ((Pi^2 - 6)*Zeta(3))^(1/3) * n^(2/3)/2 - Pi^2 * (3/((Pi^2 - 6)*Zeta(3)))^(1/3) * n^(1/3)/4 - Pi^4 / (32*(Pi^2 - 6)*Zeta(3)) - 1/8) * A^(3/2)* (2*Pi)^(1/24) / (3^(1/8) * ((Pi^2 - 6)*Zeta(3))^(3/8) * n^(1/8)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Oct 26 2019
Previous Showing 31-40 of 45 results. Next