cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 49 results. Next

A115232 Primes p which can be written in the form 2^i + q^j where i >= 0, j >= 1, q = odd prime.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 17 2006

Keywords

Comments

a(n)=A000040(n+2) for n <= 32, but A000040(35)=149 is a term of A115231;
A115233 is a subsequence; the union with A115231 gives all primes (A000040);
A006512 and A053703 are subsequences.

Crossrefs

Programs

  • Mathematica
    maxp = 281;
    Union[Sort[Reap[Do[p = 2^i + q^j; If[p <= maxp && PrimeQ[p], Sow[p]], {i, 0, Log[2, maxp]//Ceiling}, {j, 1, Log[3, maxp]//Ceiling}, {q, Prime[Range[2, PrimePi[maxp]]]}]][[2, 1]]]] (* Jean-François Alcover, Aug 03 2018 *)

Extensions

Recomputed (based on recomputation of A115230) by R. J. Mathar and Reinhard Zumkeller, Apr 29 2010
Edited by N. J. A. Sloane, Apr 30 2010
Terms a(1)=2 and a(2)=3 removed from Data by Jean-François Alcover, Aug 03 2018

A235868 Union of 2 and powers of odd primes.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229
Offset: 1

Views

Author

Keywords

Comments

Numbers n such that the group G_n:={x+yi: x^2+y^2==1 (mod n); 0<=x,yA060968(n) = A235863(n).

Crossrefs

Programs

  • Mathematica
    Select[ Range[230], # == 2 || Mod[#, 2] == 1 && PrimeNu[#] < 2 &] (* and modified by Robert G. Wilson v, Dec 29 2016 *)

Formula

{2} UNION A061345. - R. J. Mathar, Jul 19 2024

A280200 Expansion of 1/(1 - Sum_{k>=2} floor(1/omega(2*k-1))*x^(2*k-1)), where omega() is the number of distinct prime factors (A001221).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 11, 16, 21, 26, 37, 47, 61, 84, 108, 143, 191, 249, 331, 437, 575, 763, 1004, 1326, 1754, 2311, 3055, 4036, 5323, 7033, 9288, 12257, 16193, 21379, 28223, 37278, 49212, 64984, 85815, 113297, 149614, 197551, 260839, 344439, 454795, 600517, 792958, 1047023, 1382519, 1825533, 2410456, 3182845
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 28 2016

Keywords

Comments

Number of compositions (ordered partitions) into odd prime powers (1 excluded).

Examples

			a(10) = 3 because we have [7, 3], [5, 5] and [3, 7].
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[1/(1 - Sum[Floor[1/PrimeNu[2 k - 1]] x^(2 k - 1), {k, 2, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=2} floor(1/omega(2*k-1))*x^(2*k-1)).

A361924 Numbers whose infinitary divisors have distinct values of the infinitary totient function iphi (A091732).

Original entry on oeis.org

1, 3, 4, 5, 7, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 25, 27, 28, 29, 31, 33, 35, 36, 37, 39, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 73, 75, 76, 77, 79, 80, 81, 83, 85, 87, 89, 91, 92, 93, 95, 97, 99, 100, 101
Offset: 1

Views

Author

Amiram Eldar, Mar 30 2023

Keywords

Comments

First differs from A003159 at n = 57.
Numbers k such that A361923(k) = A037445(k).
Since Sum_{d infinitary divisor of k} iphi(d) = k, these are numbers k such that the multiset {iphi(d) | d infinitary divisor of k} is a partition of k into distinct parts.
Includes all the odd prime powers (A061345) and all the powers of 4 (A000302).
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 6, 66, 651, 6497, 64894, 648641, 6485605, 64851632, 648506213, 6485025363, ... . Apparently, this sequence has an asymptotic density 0.6485...

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse@ IntegerDigits[e, 2], 1]));
    iphi[1] = 1; iphi[n_] := Times @@ (Flatten@ (f @@@ FactorInteger[n]) - 1);
    idivs[n_] := Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]; idivs[1] = {1};
    q[n_] := Length @ Union[iphi /@ (d = idivs[n])] == Length[d]; Select[Range[100], q]
  • PARI
    iphi(n) = {my(f=factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], f[i, 1]^(2^(#b-k)) - 1, 1)))}
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); }
    idivs(n) = {my(d = divisors(n), f = factor(n), idiv = []); for (k=1, #d, if(isidiv(d[k], f), idiv = concat(idiv, d[k])); ); idiv; } \\ Michel Marcus at A077609
    is(k) = {my(d = idivs(k)); #Set(apply(x->iphi(x), d)) == #d;}

A110268 Consider the sequence A110566: lcm{1,2,...,n}/denominator of harmonic number H(n). a(n) is the factor that is changed going from A110566(n) to A110566(n+1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 3, 1, 1, 3, 5, 1, 3, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 11, 1, 1, 1, 1, 7, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 11, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 5
Offset: 1

Views

Author

Robert G. Wilson v, Sep 17 2005

Keywords

Comments

a(n) is always an odd prime power, A061345.

Examples

			A110566(4) through A110566(10) are {1,1,3,3,3,1,1}, therefore the factors are 1,3,1,1,3,1.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := LCM @@ Range[n]/Denominator[HarmonicNumber[n]]; Table[ LCM[f[n], f[n + 1]]/GCD[f[n], f[n + 1]], {n, 104}]
  • PARI
    f(n) = lcm(vector(n, k, k))/denominator(sum(k=1, n, 1/k));
    a(n) = my(x = f(n+1)/f(n)); if (x > 1, x, 1/x); \\ Michel Marcus, Mar 07 2018

A117119 Number of partitions of 2*n into two odd prime powers.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 5, 6, 6, 6, 7, 8, 6, 9, 7, 6, 8, 7, 6, 8, 7, 7, 9, 8, 7, 9, 8, 7, 11, 9, 7, 12, 8, 7, 9, 9, 8, 10, 8, 9, 12, 11, 9, 12, 9, 8, 13, 9, 8, 13, 10, 11, 14, 11, 8, 13, 12, 10, 13, 9, 9, 16, 10, 11, 14, 10, 10, 15, 10, 9, 16, 12, 9, 16, 12, 11, 18
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 15 2006

Keywords

Comments

Conjecture: For all n, a(n) > 0; a(n) > A002375(n).

Examples

			a(1) = #{1+1} = 1; a(2) = #{1+3} = 1; a(3) = #{1+5, 3+3} = 2;
a(20) = #{3+37, 3^2+31, 11+29, 13+3^3, 17+23} = 5;
a(21) = #{1+41, 5+37, 11+31, 13+29, 17+5^2, 19+23} = 6.
		

Crossrefs

Cf. A061345.

Programs

  • Maple
    isA061345 := proc(n)
        if n = 1 then
            true;
        elif type(n,'even') then
            false;
        elif nops(numtheory[factorset](n)) = 1 then
            true;
        else
            false;
        end if;
    end proc:
    A117119 := proc(n)
        local a,j,i;
        a := 0 ;
        for i from 1 do
            j := 2*n-i ;
            if j < i then
                break;
            end if;
            if isA061345(i) and isA061345(j) then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc:
    seq(A117119(n),n=1..60) ; # R. J. Mathar, Jul 09 2016
  • Mathematica
    oppQ[n_] := n == 1 || OddQ[n] && PrimeNu[n] == 1; a[n_] := (k = 0; For[i = 1, True, i++, j = 2n - i; If[j < i, Break[]]; If[oppQ[i] && oppQ[j], k++] ]; k); Array[a, 100] (* Jean-François Alcover, Feb 13 2018 *)

A182946 Array of odd prime powers p^j, where j>=1, by antidiagonals.

Original entry on oeis.org

3, 9, 5, 27, 25, 7, 81, 125, 49, 11, 243, 625, 343, 121, 13, 729, 3125, 2401, 1331, 169, 17, 2187, 15625, 16807, 14641, 2197, 289, 19, 6561, 78125, 117649, 161051, 28561, 4913, 361, 23, 19683, 390625, 823543, 1771561, 371293, 83521, 6859, 529, 29
Offset: 1

Views

Author

Clark Kimberling, Dec 14 2010

Keywords

Comments

The monotonic ordering of A182946, with 1 prefixed, is A061345. The joint-rank array of A182946 is A182870.

Crossrefs

Programs

  • Mathematica
     width=9;Transpose[Table[Table[Prime[n+1]^j,{n,1,width},{j,1,width}]]]; Flatten[Table[Table[%[[z-k+1]][[k]],{k,1,z}],{z,1,width}]]

A228485 Odd prime powers p^k such that p is congruent to 2 or 5 mod 9.

Original entry on oeis.org

5, 11, 23, 25, 29, 41, 47, 59, 83, 101, 113, 121, 125, 131, 137, 149, 167, 173, 191, 227, 239, 257, 263, 281, 293, 311, 317, 347, 353, 383, 389, 401, 419, 443, 461, 479, 491, 509, 529, 563, 569, 587, 599, 617, 625, 641, 653, 659, 677, 743, 761, 797, 821, 839
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 23 2013

Keywords

Comments

For any n, the equation x^3 + y^3 = a(n)*z^3 is not solvable in nonzero integers. Therefore, these numbers do not occur in A020898.

References

  • Henri Cohen, Number Theory. Volume I: Tools and Diophantine Equations, Graduate Texts in Mathematics 239, Springer, 2007, pp. 374-375.

Crossrefs

Cf. A020898, A025473. Subsequence of A061345.

Programs

  • PARI
    forstep(n=3, 839, 2, p=isprimepower(n); if(p>0, m=Mod(round(n^(1/p)), 9); if(m==2||m==5, print1(n, ", "))));

A273938 Sum of the divisors of the n-th odd prime power.

Original entry on oeis.org

1, 4, 6, 8, 13, 12, 14, 18, 20, 24, 31, 40, 30, 32, 38, 42, 44, 48, 57, 54, 60, 62, 68, 72, 74, 80, 121, 84, 90, 98, 102, 104, 108, 110, 114, 133, 156, 128, 132, 138, 140, 150, 152, 158, 164, 168, 183, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230
Offset: 1

Views

Author

R. J. Mathar, Jun 04 2016

Keywords

Crossrefs

Programs

Formula

a(n) = A000203(A061345(n-1)).

A274915 Powers of odd non-Fermat primes.

Original entry on oeis.org

1, 7, 11, 13, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 263, 269, 271, 277, 281, 283, 293, 307, 311
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 11 2016

Keywords

Comments

n is in the sequence if n = p^m where p is in A138889 and m >= 0. - Robert Israel, Sep 15 2017
The difference between two divisors of n is never a power of 2. The first number with this property that is not in the sequence is 91. - Robert Israel, Sep 15 2017
Subsequence of A061345.

Examples

			49 is in this sequence because 49 = 7^2 and 7 is not a Fermat prime.
		

Crossrefs

Programs

  • Maple
    N:= 500: # to get all terms <= N
    P:= select(isprime, {seq(i,i=7..N,2)}) minus {seq(2^i+1, i=1..ilog2(N))}:
    sort(convert(map(p -> seq(p^k,k=0..floor(log[p](N))), P), list)); # Robert Israel, Sep 15 2017

Formula

A277994(a(n)) = 0.

Extensions

Edited, new name, and corrected by Robert Israel, Sep 15 2017
Previous Showing 31-40 of 49 results. Next