cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A076503 Prime numbers whose squares have square digit-sums.

Original entry on oeis.org

2, 3, 11, 13, 23, 31, 41, 59, 67, 101, 103, 113, 131, 139, 157, 193, 211, 229, 239, 257, 283, 311, 337, 347, 373, 401, 409, 419, 463, 491, 499, 509, 571, 599, 643, 653, 661, 743, 751, 761, 769, 797, 1013, 1021, 1031, 1039, 1103, 1129, 1193, 1201, 1229, 1237
Offset: 1

Views

Author

Christopher Schloetz (cschloetz(AT)hotmail.com), Nov 09 2002

Keywords

Examples

			13 is a member because 13 is prime and the digit-sum of its square is 1+6+9=16, which is also square.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[250]],IntegerQ[Sqrt[Total[IntegerDigits[#^2]]]]&] (* Harvey P. Dale, Aug 30 2016 *)
  • PARI
    isok(n) = if (! isprime(n), 0, d = digits(n^2); issquare(sum(i=1, #d, d[i]))) \\ Michel Marcus, Jun 20 2013

Extensions

More terms from Michel ten Voorde Jun 13 2003

A153747 Numbers k such that there are 9 digits in k^2 and for each factor f of 9 (1,3) the sum of digit groupings of size f is a square.

Original entry on oeis.org

10000, 10001, 10002, 10003, 10004, 10005, 10010, 10011, 10012, 10013, 10020, 10021, 10022, 10030, 10031, 10200, 10284, 10287, 10300, 10353, 10356, 10359, 10433, 10578, 10588, 10617, 10623, 10642, 10679, 10683, 10686, 10692, 10734
Offset: 1

Views

Author

Doug Bell, Dec 31 2008

Keywords

Comments

This sequence is a subsequence of both A153745 and A061910.
Last term is a(474) = 31493. - Giovanni Resta, Jun 06 2015

Examples

			10433^2 = 108847489; 1+0+8+8+4+7+4+8+9 = 49 = 7^2; and 108+847+489 = 1444 = 38^2.
		

Crossrefs

Programs

  • Mathematica
    dgfsQ[n_]:=Module[{idn2=IntegerDigits[n^2]},AllTrue[{Sqrt[ Total[ idn2]], Sqrt[ Total[ FromDigits/@ Partition[idn2,3]]]},IntegerQ]]; Select[ Range[ 10000,31622],dgfsQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 19 2018 *)

A153748 Numbers k such that there are 10 digits in k^2 and for each factor f of 10 (1, 2, 5) the sum of digit groupings of size f is a square.

Original entry on oeis.org

33018, 33051, 33081, 33084, 33150, 33153, 33477, 33573, 33579, 33582, 33603, 33606, 33642, 33645, 33648, 36312, 39192, 41703, 44928, 47439, 53052, 53971, 55785, 56277, 60725, 63490, 66342, 66345, 66375, 66381, 66444, 66903, 66942, 67008, 69645, 76710, 77530
Offset: 1

Views

Author

Doug Bell, Dec 31 2008

Keywords

Comments

This sequence is a subsequence of both A153745 and A061910.
Last term is a(48) = 99677. - Giovanni Resta, Jun 06 2015

Crossrefs

Extensions

More terms from Giovanni Resta, Jun 06 2015

A153750 Numbers k such that there are 14 digits in k^2 and for each factor f of 14 (1,2,7) the sum of digit groupings of size f is a square.

Original entry on oeis.org

3196200, 3330249, 3330348, 3330480, 3330801, 3331071, 3331367, 3331695, 3331731, 3331758, 3331803, 3331830, 3331860, 3331866, 3331929, 3331995, 3332025, 3332058, 3332061, 3332091, 3332124, 3332127, 3332160, 3332190
Offset: 1

Views

Author

Doug Bell, Dec 31 2008

Keywords

Comments

This sequence is a subsequence of both A153745 and A061910.
Last term is a(266) = 9996830. - Giovanni Resta, Jun 06 2015

Examples

			3331367^2 = 11098006088689;
1+1+0+9+8+0+0+6+0+8+8+6+8+9 = 64 = 8^2;
11+09+80+06+08+86+89 = 289 = 17^2;
1109800+6088689 = 7198489 = 2683^2.
		

Crossrefs

Programs

  • Mathematica
    sdgQ[n_]:=Module[{idn=IntegerDigits[n^2],t2,t7},t2=Total[FromDigits/@ Partition[ idn,2]];t7=Total[FromDigits/@Partition[idn,7]]; AllTrue[ {Sqrt[Total[idn]],Sqrt[t2],Sqrt[t7]},IntegerQ]]; Select[Range[ Round[ 3.16*10^6],Round[3.34*10^6]],sdgQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 07 2016 *)

A153751 Numbers k such that there are 15 digits in k^2 and for each factor f of 15 (1,3,5) the sum of digit groupings of size f is a square.

Original entry on oeis.org

10000000, 10000001, 10000002, 10000003, 10000004, 10000005, 10000010, 10000011, 10000012, 10000013, 10000020, 10000021, 10000022, 10000030, 10000031, 10000200, 10000300, 10011003, 10022000, 10035990, 10042440
Offset: 1

Views

Author

Doug Bell, Dec 31 2008

Keywords

Comments

This sequence is a subsequence of both A153745 and A061910.
The last term is a(2782) = 31616301. - Giovanni Resta, Jun 06 2015

Examples

			10000011^2 = 100000220000121;
1+0+0+0+0+0+2+2+0+0+0+0+1+2+1 = 9 = 3^2;
100+000+220+000+121 = 441 = 21^2;
10000+02200+00121 = 12321 = 111^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^7,31622776],AllTrue[{Sqrt[Total[IntegerDigits[#^2]]],Sqrt[Total[ FromDigits/@ Partition[IntegerDigits[#^2],3]]],Sqrt[Total[FromDigits/@Partition[IntegerDigits[#^2],5]]]},IntegerQ]&] (* Harvey P. Dale, Apr 11 2023 *)

A153752 Numbers k such that there are 16 digits in k^2 and for each factor f of 16 (1,2,4,8) the sum of digit groupings of size f is a square.

Original entry on oeis.org

31883334, 31886667, 31956690, 31970049, 32469999, 33338100, 33341067, 33870000, 34140000, 34149999, 34713042, 34763334, 34856667, 35780000, 36356249, 36356480, 36359065, 37523635, 37737452, 37949451, 38362409
Offset: 1

Views

Author

Doug Bell, Dec 31 2008

Keywords

Comments

This sequence is a subsequence of both A153745 and A061910.
This sequence contains 124 terms, with a(124) = 9998956. - Giovanni Resta, Jun 06 2015

Examples

			31883334^2 = 1016546986955556;
1+0+1+6+5+4+6+9+8+6+9+5+5+5+5+6 = 81 = 9^2;
10+16+54+69+86+95+55+56 = 441 = 21^2;
1016+5469+8695+5556 = 20736 = 144^2;
10165469+86955556 = 97121025 = 9855^2.
		

Crossrefs

Programs

  • Mathematica
    okQ[n_]:=Module[{n2=IntegerDigits[n^2]},And@@(IntegerQ[Sqrt[ #]]&/@ (Total/@(Table[ FromDigits/@Partition[n2,2^i],{i,0,3}])))]; Select[ Range[31622777,38400000],okQ] (* Harvey P. Dale, Aug 12 2012 *)

A223035 Prime numbers whose digits squared sum to a square.

Original entry on oeis.org

2, 3, 5, 7, 43, 263, 269, 1153, 1531, 1933, 2063, 2069, 2287, 2609, 3319, 3391, 3511, 3931, 4003, 4441, 4801, 4889, 5113, 5399, 5939, 6029, 6067, 6203, 6469, 6607, 8849, 9133, 9539, 10111, 10177, 10513, 10531, 10771, 11149, 11213, 11273, 11321, 11491, 11503
Offset: 1

Views

Author

Keywords

Examples

			269 is a prime number, and 2^2+6^2+9^2 = 121 = 11^2.
		

Crossrefs

Prime numbers from the sequence A175396.

Programs

  • Mathematica
    Select[Prime[Range[2000]], IntegerQ[Sqrt[Total[IntegerDigits[#]^2]]] &] (* T. D. Noe, Apr 05 2013 *)
  • R
    ssod<-function(i) sum(as.numeric(strsplit(as.character(i),"")[[1]])^2)
    issquare<-function(x) as.integer(sqrt(x))==sqrt(x)
    x=as.bigz(c()); i=2
    while(length(x)<10000) {if(issquare(ssod(i))) x=c(x,i); i=nextprime(i)}

A262712 Numbers k such that sum of digits of k^2 is 9.

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 21, 30, 39, 45, 48, 51, 60, 90, 102, 105, 111, 120, 150, 180, 201, 210, 249, 300, 318, 321, 348, 351, 390, 450, 480, 501, 510, 549, 600, 900, 1002, 1005, 1011, 1020, 1050, 1101, 1110, 1149, 1200, 1500, 1761, 1800, 2001, 2010, 2100, 2490
Offset: 1

Views

Author

Vincenzo Librandi, Sep 28 2015

Keywords

Comments

Subsequence of A008585.

Examples

			6 is in sequence because 6^2 = 36 and 3+6 = 9.
		

Crossrefs

Cf. similar sequences listed in A262711.

Programs

  • Magma
    [n: n in [1..2*10^4] | &+Intseq(n^2) eq 9 ];
    
  • Maple
    filter:= proc(n) convert(convert(n^2,base,10),`+`) = 9 end proc:select(filter, [$1..10^5]); # Robert Israel, Jan 04 2024
  • Mathematica
    Select[Range[10^5], Total[IntegerDigits[#^2]] == 9 &]
  • PARI
    for(n=1, 1e8, if (sumdigits(n^2) == 9, print1(n", "))) \\ Altug Alkan, Sep 28 2015

A262713 Numbers k such that the sum of digits of k^2 is 10.

Original entry on oeis.org

8, 19, 35, 46, 55, 71, 80, 145, 152, 179, 190, 251, 332, 350, 361, 449, 451, 460, 548, 550, 649, 710, 800, 1450, 1520, 1790, 1900, 2510, 3320, 3500, 3610, 4490, 4499, 4510, 4600, 5480, 5500, 6490, 7100, 8000, 14500, 15200, 17900, 19000, 20249, 20251, 24499
Offset: 1

Views

Author

Vincenzo Librandi, Sep 28 2015

Keywords

Comments

From Altug Alkan, Sep 29 2015: (Start)
Subsequence of A001651.
If a(n)+1 mod 9 != 0 then a(n)-1 mod 9 = 0;
if a(n)-1 mod 9 != 0 then a(n)+1 mod 9 = 0;
a(n)^2 - 1 mod 9 = 0. (End)
A135027(n)*10^k is a term for all n > 0, k >= 0. - Michael S. Branicky, Aug 19 2021

Examples

			19 is in sequence because 19^2 = 361 and 3+6+1 = 10.
		

Crossrefs

Cf. similar sequences listed in A262711.

Programs

  • Magma
    [n: n in [1..3*10^4] | &+Intseq(n^2) eq 10 ];
    
  • Mathematica
    Select[Range[10^5], Total[IntegerDigits[#^2]] == 10 &]
  • PARI
    for(n=1, 1e6, if (sumdigits(n^2) == 10, print1(n", "))) \\ Altug Alkan, Sep 28 2015
    
  • Python
    # See linked program to go to larger numbers
    def ok(n): return sum(map(int, str(n*n))) == 10
    print(list(filter(ok, range(25000)))) # Michael S. Branicky, Aug 19 2021

A371047 Numbers k such that the digital sum of k^4 is a fourth power.

Original entry on oeis.org

0, 1, 10, 11, 100, 101, 110, 1000, 1001, 1010, 1100, 1434, 1716, 1767, 1776, 1884, 2094, 2112, 2133, 2208, 2271, 2292, 2298, 2514, 2544, 2556, 2604, 2628, 2892, 2919, 2922, 2976, 3006, 3018, 3066, 3078, 3096, 3111, 3126, 3138, 3144, 3159, 3162, 3492, 3498, 3504
Offset: 1

Views

Author

Stefano Spezia, Mar 09 2024

Keywords

Crossrefs

Cf. A000583, A007953, A011557 (subsequence), A038444 (subsequence), A061910, A237525, A371004.

Programs

  • Mathematica
    Select[Range[0,4000]^4,IntegerQ[DigitSum[#]^(1/4)]&]^(1/4)

Formula

a(n) = A371004(n)^(1/4).
Previous Showing 11-20 of 31 results. Next