cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A173617 Numbers k such that phi(tau(k)) = rad(k).

Original entry on oeis.org

1, 4, 8, 32, 36, 192, 288, 768, 972, 1458, 5120, 13122, 326592, 19531250, 22588608, 46137344, 171532242, 110000000000, 132799613957120, 1618481116086272, 506590324238281250, 8358680908399640576, 162805498773679522226642, 198263834416799184651812864, 7852841179377049820122874642432, 4299870835974154129876817272635392
Offset: 1

Views

Author

Michel Lagneau, Feb 22 2010

Keywords

Comments

rad(n) is the product of the primes dividing n (A007947), tau(n) is the number of divisors of n (A000005), and phi(n) is Euler totient function (A000010).
Numbers k such that A163109(k) = A007947(k).
a(18) > 10^10. - Donovan Johnson, Jul 27 2011
From Amiram Eldar, Feb 08 2025: (Start)
1 is the only odd term in this sequence.
The number of terms with any given number of divisors is finite.
There are no terms whose number of divisors d equals 2 or in A049195, or when omega(phi(d)) > bigomega(d), where omega = A001221 and bigomega = A001222.
If p is a Sophie Germain prime (A005384), then 2*p^(2*p) is a term. (End)

Examples

			8 is a term since tau(8) = 4, phi(4) = 2 and rad(8) = 2.
13122 is a term  tau(13122) = 18, phi(18) = 6 and rad(13122) = 6.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 1000000 do :t1:= ifactors(n)[2] : t2 :=mul(t1[i][1], i=1..nops(t1)): if phi(tau(n)) = t2 then print (n): else fi : od :
  • Mathematica
    (* First program: see the links section. *)
    (* Second program: *)
    q[k_] := k == 1 || EvenQ[k] && Module[{f = FactorInteger[k]}, EulerPhi[Times @@ (f[[;;,2]] + 1)] == Times @@ f[[;;, 1]]]; Select[Range[400000], q] (* Amiram Eldar, Feb 08 2025 *)
  • PARI
    isok(k) = if(k == 1, 1, if(k % 2, 0, my(f=factor(k)); eulerphi(numdiv(f)) == vecprod(f[,1]))); \\ Amiram Eldar, Feb 08 2025

Extensions

a(14)-a(17) from Donovan Johnson, Jul 27 2011
a(18)-a(26) from Amiram Eldar, Feb 08 2025

A173618 Numbers k such that tau(phi(k)) = rad(k).

Original entry on oeis.org

1, 4, 36, 54, 96, 200, 448, 1280, 2700, 4500, 5103, 9720, 11264, 14112, 14580, 17280, 26624, 32928, 48000, 54432, 71442, 75000, 81648, 152064, 184320, 187500, 258048, 307200, 350000, 637875, 1250235, 1344560, 1557504, 2044416, 2187500, 2367488, 3234816
Offset: 1

Views

Author

Michel Lagneau, Feb 22 2010

Keywords

Comments

rad(k) is the product of the primes dividing k (A007947), tau(k) is the number of divisors of k (A000005), phi(k) is the Euler totient function (A000010).

Examples

			phi(4) = 2, tau(2) = 2 and rad(4) = 2 phi(36) = 12, tau(12) = 6 and rad(36) = 6
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 1000000 do : t1:= ifactors(n)[2] : t2 :=mul(t1[i][1], i=1..nops(t1)): if tau(phi(n))= t2 then print (n): else fi: od :
  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger[n]); Select[Range[10^5], DivisorSigma[0, EulerPhi[#]] == rad[#] &] (* Amiram Eldar, Jul 09 2019*)
  • PARI
    isok(k) = numdiv(eulerphi(k)) == factorback(factorint(k)[, 1]); \\ Michel Marcus, Jul 09 2019

Formula

k such that A062821(k) = A007947(k).

Extensions

a(30)-a(37) from Donovan Johnson, Jul 27 2011

A196225 Smallest number k such that sigma(tau(k)) = n, or 0 if there is no such k.

Original entry on oeis.org

1, 0, 2, 4, 0, 16, 6, 64, 0, 0, 0, 12, 36, 4096, 24, 0, 0, 48, 0, 262144, 0, 0, 0, 144, 0, 0, 0, 60, 0, 268435456, 120, 576, 0, 0, 0, 3072, 0, 68719476736, 180, 900, 0, 240, 0, 4398046511104, 0, 0, 0, 5184, 0, 0, 0, 0, 0, 196608, 0, 960, 46656, 0, 0, 360, 0, 1152921504606846976
Offset: 1

Views

Author

Jaroslav Krizek, Jan 02 2013

Keywords

Comments

Smallest number k such that A062069(k) = A000203(A000005(k)) = n, or 0 if there is no such k.

Examples

			a(6) = 16 because number 16 is the smallest number k such that sigma(tau(k)) = 6; (tau(16) = 5, sigma(5) = 6).
		

Crossrefs

Cf. A062069 (sigma(tau(n))), A000203(sigma(n)), A000005(tau(n)), A005179, A051444.

Programs

Formula

a(n) = 0 iff A051444(n) = 0.

Extensions

a(24) and a(48) corrected by Amiram Eldar, Jan 21 2025

A280583 a(n) = product of divisors of the number of divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 8, 2, 8, 3, 8, 2, 36, 2, 8, 8, 5, 2, 36, 2, 36, 8, 8, 2, 64, 3, 8, 8, 36, 2, 64, 2, 36, 8, 8, 8, 27, 2, 8, 8, 64, 2, 64, 2, 36, 36, 8, 2, 100, 3, 36, 8, 36, 2, 64, 8, 64, 8, 8, 2, 1728, 2, 8, 36, 7, 8, 64, 2, 36, 8, 64, 2, 1728, 2, 8, 36, 36, 8
Offset: 1

Views

Author

Jaroslav Krizek, Jan 07 2017

Keywords

Examples

			For n = 6; a(n) = product of divisors (tau(6)) = 1*2*4 = 8.
		

Crossrefs

Programs

  • Magma
    [&*[d: d in Divisors(#[d: d in Divisors(n)])]: n in [1..100]]
    
  • Mathematica
    Table[Times@@Divisors[DivisorSigma[0,n]],{n,80}] (* Harvey P. Dale, Dec 04 2021 *)
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A280583(n): return (lambda m:(isqrt(m) if (c:=divisor_count(m)) & 1 else 1)*m**(c//2))(divisor_count(n)) # Chai Wah Wu, Jun 25 2022

Formula

a(n) = A007955(A000005(n)).
a(p) = 2 for p = primes (A000040).
a(n) = 3 for squares of primes (A001248).

A113837 A number k is included if d(sigma(k)) > sigma(d(k)), where d(k) is number of positive divisors of k and sigma(k) is sum of positive divisors of k.

Original entry on oeis.org

5, 7, 11, 13, 14, 15, 17, 19, 22, 23, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 109, 110, 111, 113, 114
Offset: 1

Views

Author

Leroy Quet, Jan 23 2006

Keywords

Examples

			d(sigma(14)) = d(24) = 8, and sigma(d(14)) = sigma(4) = 7. Since 8 > 7, 14 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) if tau(sigma(n))>sigma(tau(n)) then n else fi end: seq(a(n),n=1..122); # Emeric Deutsch, Feb 06 2006
  • Mathematica
    okQ[n_] := DivisorSigma[0, DivisorSigma[1, n]] >
               DivisorSigma[1, DivisorSigma[0, n]];
    Select[Range[120], okQ] (* Jean-François Alcover, Nov 14 2024 *)

Extensions

More terms from Emeric Deutsch, Feb 06 2006

A336687 Numbers m such that tau(sigma(m)) and sigma(tau(m)) both divide m, where tau(m) is the number of divisors function (A000005) and sigma(m) is the sum of divisors function (A000203).

Original entry on oeis.org

1, 3, 4, 12, 64, 84, 140, 144, 162, 192, 336, 360, 420, 468, 480, 576, 600, 644, 720, 780, 1008, 1344, 1512, 1584, 1600, 1740, 1872, 2160, 2240, 2448, 2592, 2736, 2880, 2884, 3136, 3240, 3888, 4032, 4158, 4228, 4464, 4608, 4800, 5040, 5115, 5184, 5328, 5670, 6060, 6192, 6336
Offset: 1

Views

Author

Bernard Schott, Jul 31 2020

Keywords

Comments

Conjecture: The only m such that m = tau(sigma(m))*sigma(tau(m)) are in {1,468,3240}. Verified for m up to 1*10^9. - Ivan N. Ianakiev, Aug 06 2020

Examples

			For 84: tau(84) = 12 and sigma(12) = 28 with 84/28 = 3. Also, sigma(84) = 224 and tau(224) = 12 with 84/12 = 7. Hence, 84 is a term.
		

Crossrefs

Intersection of A336612 and A336613.

Programs

  • Maple
    with(numtheory):
    filter:= m-> irem(m, tau(sigma(m)))=0 and irem(m, sigma(tau(m)))=0:
    select(filter, [$1..7000])[];
  • Mathematica
    Select[Range[6400], And @@ Divisible[#, {DivisorSigma[0, DivisorSigma[1, #]], DivisorSigma[1, DivisorSigma[0, #]]}] &] (* Amiram Eldar, Jul 31 2020 *)
  • PARI
    isok(m) = !(m % numdiv(sigma(m))) && !(m % sigma(numdiv(m))); \\ Michel Marcus, Aug 02 2020
Previous Showing 21-26 of 26 results.