A173617 Numbers k such that phi(tau(k)) = rad(k).
1, 4, 8, 32, 36, 192, 288, 768, 972, 1458, 5120, 13122, 326592, 19531250, 22588608, 46137344, 171532242, 110000000000, 132799613957120, 1618481116086272, 506590324238281250, 8358680908399640576, 162805498773679522226642, 198263834416799184651812864, 7852841179377049820122874642432, 4299870835974154129876817272635392
Offset: 1
Keywords
Examples
8 is a term since tau(8) = 4, phi(4) = 2 and rad(8) = 2. 13122 is a term tau(13122) = 18, phi(18) = 6 and rad(13122) = 6.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
Links
- Amiram Eldar, Mathematica code for A173617, 2025.
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1919), 75-113.
- Wacław Sierpiński, Number Of Divisors And Their Sum, Elementary theory of numbers, Warszawa, 1964.
- Wikipedia, Euler's totient function.
Crossrefs
Programs
-
Maple
with(numtheory):for n from 1 to 1000000 do :t1:= ifactors(n)[2] : t2 :=mul(t1[i][1], i=1..nops(t1)): if phi(tau(n)) = t2 then print (n): else fi : od :
-
Mathematica
(* First program: see the links section. *) (* Second program: *) q[k_] := k == 1 || EvenQ[k] && Module[{f = FactorInteger[k]}, EulerPhi[Times @@ (f[[;;,2]] + 1)] == Times @@ f[[;;, 1]]]; Select[Range[400000], q] (* Amiram Eldar, Feb 08 2025 *)
-
PARI
isok(k) = if(k == 1, 1, if(k % 2, 0, my(f=factor(k)); eulerphi(numdiv(f)) == vecprod(f[,1]))); \\ Amiram Eldar, Feb 08 2025
Extensions
a(14)-a(17) from Donovan Johnson, Jul 27 2011
a(18)-a(26) from Amiram Eldar, Feb 08 2025
Comments