cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 108 results. Next

A096855 a(n) = A062401(2^n + 1).

Original entry on oeis.org

2, 2, 2, 12, 6, 16, 24, 80, 84, 320, 360, 864, 1320, 5456, 5184, 15744, 19800, 52800, 69120, 349520, 370080, 1036800, 1425600, 3640896, 4741632, 13989888, 27091584, 76743040, 94656000, 166387200, 412473600, 1407389952, 1420488192, 3459760128, 6502788864, 14778408960
Offset: 0

Views

Author

Labos Elemer, Jul 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ EulerPhi[ DivisorSigma[1, 2^n+1]], {n, 0, 33}]

Formula

a(n) = A000010(A069061(n)). - Amiram Eldar, Jun 04 2024

Extensions

Edited and extended by Robert G. Wilson v, Jul 23 2004
Offset changed to 0, a(0) prepended and two more terms added by Amiram Eldar, Jun 04 2024

A096860 Function A062401(x) = phi(sigma(x)) = f(x) is iterated. Starting with n, a(n) is the count of distinct terms arising in the transient of this trajectory, that is: a(n) = A096859(n) - A095955(n).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 0, 2, 1, 1, 4, 2, 3, 1, 3, 3, 1, 1, 0, 1, 3, 1, 2, 1, 1, 3, 2, 3, 1, 1, 0, 2, 2, 1, 1, 3, 1, 3, 1, 2, 2, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 3, 1, 3, 0, 4, 2, 1, 5, 3, 1, 1, 1, 3
Offset: 1

Views

Author

Labos Elemer, Jul 21 2004

Keywords

Examples

			n=255: list={255,144,360,288,[432,480],432,...}, t=transient=4, c=cycle=2, a(255)=t=4;
n=244: list={244,180,144,360,288,[432,480],432,...}, a(244)=4.
a(n)=0 means that n is a recurrent term from A096850.
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 120}, Array[Length@ Union@ # - Length@ Select[Tally@ #, Last@ # > 1 &] &@ NestList[EulerPhi@ DivisorSigma[1, #] &, #, nn] &, 105]] (* Michael De Vlieger, Nov 18 2017 *)
  • Scheme
    (define (A096860 n) (let loop ((visited (list n))) (let ((next (A062401 (car visited)))) (cond ((member next visited) => (lambda (transientplusone) (- (length transientplusone) 1))) (else (loop (cons next visited))))))) ;; Antti Karttunen, Nov 18 2017

A295310 a(n) = gcd(n, A062401(n)), where A062401(n) = phi(sigma(n)).

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 8, 3, 2, 1, 12, 1, 2, 1, 2, 1, 6, 1, 4, 1, 2, 1, 8, 5, 2, 1, 4, 1, 6, 1, 4, 1, 2, 1, 36, 1, 2, 3, 8, 1, 2, 1, 4, 3, 2, 1, 12, 1, 10, 3, 2, 1, 2, 1, 8, 1, 2, 1, 12, 1, 2, 3, 2, 1, 6, 1, 4, 1, 2, 1, 24, 1, 2, 15, 4, 1, 6, 1, 20, 1, 2, 1, 12, 1, 2, 1, 8, 1, 18, 1, 4, 1, 2, 1, 24, 1, 2, 3, 20, 1, 6, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Array[GCD[#, EulerPhi[DivisorSigma[1, #]]] &, 105] (* Michael De Vlieger, Nov 23 2017 *)
  • PARI
    a(n) = gcd(n, eulerphi(sigma(n))); \\ Michel Marcus, Nov 23 2017

Formula

a(n) = gcd(n, A000010(A000203(n))).

A295312 a(n) = A062401(n) / A295310(n) = phi(sigma(n)) / gcd(n, phi(sigma(n))).

Original entry on oeis.org

1, 1, 2, 3, 2, 2, 4, 1, 4, 3, 4, 1, 6, 4, 8, 15, 6, 4, 8, 3, 16, 6, 8, 2, 6, 6, 16, 6, 8, 4, 16, 9, 16, 9, 16, 2, 18, 8, 8, 3, 12, 16, 20, 6, 8, 12, 16, 5, 36, 6, 8, 21, 18, 16, 24, 4, 32, 12, 16, 4, 30, 16, 16, 63, 24, 8, 32, 9, 32, 24, 24, 4, 36, 18, 4, 12, 32, 8, 32, 3, 110, 18, 24, 8, 36, 20, 32, 6, 24, 4, 48, 12, 64, 24, 32, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2017

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(fsn = eulerphi(sigma(n))); fsn/gcd(n, fsn); \\ Michel Marcus, Nov 23 2017

Formula

a(n) = A000010(A000203(n)) / gcd(n, A000010(A000203(n))).

A353647 Möbius transform of A062401, where A062401(n) = phi(sigma(n)).

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 3, 2, 10, 3, 3, 4, 5, 3, 5, 22, 5, 10, 7, 2, 11, 7, 7, 2, 28, 5, 4, 12, 7, 11, 15, 6, 11, 11, 11, 40, 17, 7, 17, 10, 11, 11, 19, 8, 6, 15, 15, 22, 32, 26, 17, 26, 17, 4, 19, 6, 23, 15, 15, 14, 29, 15, 22, 90, 17, 23, 31, 14, 23, 25, 23, 20, 35, 17, 24, 28, 25, 17, 31, 14, 94, 23, 23, 44, 29, 19
Offset: 1

Views

Author

Antti Karttunen, May 06 2022

Keywords

Comments

The first negative term is a(1944) = -76.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#] * EulerPhi[DivisorSigma[1, #]] &]; Array[a, 100] (* Amiram Eldar, May 06 2022 *)
  • PARI
    A353647(n) = sumdiv(n,d,moebius(n/d)*eulerphi(sigma(d)));

Formula

a(n) = Sum_{d|n} A008683(n/d) * A062401(d).

A082991 a(1) = 1 and for n > 1, a(n) = 2 * length of the cycle reached for the map x -> A062401(x), starting at n [where A062401(n) = phi(sigma(n))], or -1 if no finite cycle is ever reached.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 4, 2, 2, 4, 4, 2, 4, 2, 2, 6, 4, 6, 2, 2, 6, 2, 2, 6, 6, 2, 6, 6, 2, 6, 6, 4, 6, 6, 6, 4, 6, 6, 6, 6, 2, 4, 2, 6, 6, 6, 6, 4, 4, 4, 6, 4, 6, 4, 6, 4, 4, 6, 6, 4, 6, 4, 4, 4, 6, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 4, 4, 6, 4, 4, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Benoit Cloitre, May 29 2003

Keywords

Comments

From the original definition: Define a sequence u_n as follows: u_n(1) = n, thereafter u_n(2k) = sigma(u_n(2k-1)), u_n(2k+1) = phi(u_n(2k)); then a(n) is the length of the ultimate period of u_n(k) (which is conjectured to become ultimately periodic for any n>=1).
Conjecture: despite results for small terms, all even number are obtained as values. (For example, 12 occurs since a(12102) = 12).
From Antti Karttunen, Nov 07 2017: (Start)
Because for all n > 1, A000010(n) < n and A062401(n) > 1, such sequences u_n cannot end in odd cycle when n > 1. From this follows that for n > 1, a(n) = 2 * length of the cycle reached for the map x->A062401(x), starting at n, or -1 if no finite cycle is ever reached.
See entry A095955 for further notes about the occurrence of cycles.
(End)

Examples

			If n=6, u(1)=6, u(2)=sigma(6)=12, u(3)=phi(12)=4, u(4)=sigma(4)=7 u(5)=phi(7)=6, hence u(k) becomes periodic with period (6,12,4,7) of length 4 and a(6)=4.
		

References

  • J. Berstel et al., Combinatorics on Words: Christoffel Words and Repetitions in Words, Amer. Math. Soc., 2008. See p. 83.

Crossrefs

Formula

a(1) = 1; for n > 1, a(n) = 2*A095955(n). [See comments.] - Antti Karttunen, Nov 07 2017

Extensions

Definition simplified by Antti Karttunen, Nov 07 2017

A097005 A062401(x) is iterated. Initial value = n!. a(n) is the path-length of trajectory = count of transients and recurrent terms, i.e., all distinct states arising in trajectory.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 1, 9, 6, 14, 2, 51, 35, 81, 32, 31
Offset: 0

Views

Author

Labos Elemer, Jul 22 2004

Keywords

Examples

			n=10: 10! = 3628800; trajectory ={3628800, 5702400, 5702400, ...} a(10) = 2, one transient and 1 cycle term.
		

Crossrefs

Programs

  • Mathematica
    fs[x_]:=EulerPhi[DivisorSigma[1,x]] itef[x_,len_]:=NestList[fs,x,len] Table[Length[Union[itef[w!,1000]]],{w,0,16}]

Formula

a(n) = A096859(n!) = A096859(A000142(n)). - Michel Marcus, Jul 27 2017

A096999 A062401(x)=phi[sigma(x)] function is iterated; initial value=2^n; a(n)=largest term of trajectory.

Original entry on oeis.org

2, 6, 8, 30, 96, 126, 128, 480, 600, 3840, 2048, 8190, 10584, 27000, 32768, 196560, 311040, 851840, 1161216, 2250600, 2640704, 150992640, 150992640, 283740364800, 283740364800, 283740364800, 283740364800, 7608287232, 7608287232
Offset: 1

Views

Author

Labos Elemer, Jul 21 2004

Keywords

Examples

			n=8: 2^n=256, list={256,432,480,432,...}, max=a(8)=480
		

Crossrefs

Programs

  • Mathematica
    fs[x_] :=EulerPhi[DivisorSigma[1, x]] itef[x_, hos_] :=NestList[fs, x, hos] Table[Max[itef[2^w, 200]], {w, 1, 30}]

A097000 A062401(x)=phi[sigma(x)] function is iterated; initial value=2^n; a(n)=smallest term of trajectory.

Original entry on oeis.org

2, 4, 8, 16, 32, 64, 128, 256, 432, 1024, 1728, 4096, 1800, 7200, 32768, 65536, 131072, 262144, 326592, 1036800, 1658880, 4194304, 4838400, 16777216, 33554432, 67108864, 82301184, 207360000, 361267200, 414720000
Offset: 1

Views

Author

Labos Elemer, Jul 21 2004

Keywords

Examples

			n=8: 2^n=256, list={256,432,480,432,...}, max=a(8)=256, the start value;
n=13:2^n=8192,list={8192,10584,8640,8064,6144,3456,[2560,1800,2880, 3024,3840,3456],2560,..}, min=1800=a(13), a term of 6-cycle.
		

Crossrefs

Programs

  • Mathematica
    fs[x_] :=EulerPhi[DivisorSigma[1, x]] itef[x_, hos_] :=NestList[fs, x, hos] Table[Min[itef[2^w, 200]], {w, 1, 30}]

A062402 a(n) = sigma(phi(n)).

Original entry on oeis.org

1, 1, 3, 3, 7, 3, 12, 7, 12, 7, 18, 7, 28, 12, 15, 15, 31, 12, 39, 15, 28, 18, 36, 15, 42, 28, 39, 28, 56, 15, 72, 31, 42, 31, 60, 28, 91, 39, 60, 31, 90, 28, 96, 42, 60, 36, 72, 31, 96, 42, 63, 60, 98, 39, 90, 60, 91, 56, 90, 31, 168, 72, 91, 63, 124, 42, 144, 63, 84, 60, 144
Offset: 1

Views

Author

Jason Earls, Jul 08 2001

Keywords

Comments

Makowski and Schinzel conjectured in 1964 that a(n) = sigma(phi(n)) >= n/2 for all n (B42 of Guy Unsolved Problems...). This has been verified for various classes of numbers and proved to be true in general if it is true for squarefree integers (see Cohen's paper). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Sep 07 2002
Atanassov proves the above conjecture. - Charles R Greathouse IV, Dec 06 2016

Examples

			a(9)= 12 because phi(9)= 6 and sigma(6)= 12.
		

References

  • Krassimir T. Atanassov, One property of φ and σ functions, Bull. Number Theory Related Topics 13 (1989), pp. 29-37.
  • A. Makowski and A. Schinzel, On the functions phi(n) and sigma(n), Colloq. Math. 13, 95-99 (1964).
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, p. 13.

Crossrefs

Programs

  • Haskell
    a062402 = a000203 . a000010  -- Reinhard Zumkeller, Jan 04 2013
    
  • Magma
    [SumOfDivisors(EulerPhi(n)): n in [1..100]] //  Marius A. Burtea, Jan 19 2019
  • Maple
    with(numtheory); A062402:=n->sigma(phi(n)); seq(A062402(k), k=1..100); # Wesley Ivan Hurt, Nov 01 2013
  • Mathematica
    Table[DivisorSigma[1, EulerPhi[n]], {n, 1, 80}] (* Carl Najafi, Aug 16 2011 *)
  • PARI
    a(n)=sigma(eulerphi(n));
    vector(150,n,a(n))
    
  • Python
    from sympy import divisor_sigma, totient
    print([divisor_sigma(totient(n)) for n in range(1, 101)]) # Indranil Ghosh, Mar 18 2017
    

Formula

sigma(A062401(x)) = a(sigma(x)) or phi(a(x)) = A062401(phi(x)). - Labos Elemer, Jul 22 2004
Previous Showing 11-20 of 108 results. Next