cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A140414 Triangle T(p,s) showing the coefficients of sequences which are half their p-th differences.

Original entry on oeis.org

3, 2, 1, 3, -3, 3, 4, -6, 4, 1, 5, -10, 10, -5, 3, 6, -15, 20, -15, 6, 1, 7, -21, 35, -35, 21, -7, 3, 8, -28, 56, -70, 56, -28, 8, 1, 9, -36, 84, -126, 126, -84, 36, -9, 3, 10, -45, 120, -210, 252, -210, 120, -45, 10, 1
Offset: 1

Views

Author

Paul Curtz, Jun 25 2008

Keywords

Comments

The p-th differences of a sequence a(n) are Delta^p(n) = sum_{l=0}^p (-1)^(l+p)*binomial(p,l)*a(n+l).
Setting this equal to 2*a(n) as demanded gives a recurrence with coefficients tabulated here,
a(n+p) = sum_{s=1..p} T(p,s)*a(n+p-s).

Examples

			The triangle starts in row p=0 as:
   3; (p=1, example A000244, a(n+1)=3*a(n) )
   2,  1; (p=2 example A000244 or A000129, a(n+2) = 2*a(n+1)+a(n) )
   3, -3,  3; (p=3 example A052103 or A136297, a(n+3) = 3*a(n+2)-3*a(n+1)+3*a(n) )
   4, -6,  4,   1;
   5,-10, 10,  -5,  3;
   6,-15, 20, -15,  6,   1;
   7,-21, 35, -35, 21,  -7,  3;
   8,-28, 56, -70, 56, -28,  8,  1;
   9,-36, 84,-126,126, -84, 36, -9, 3;
  10,-45,120,-210,252,-210,120,-45,10,1;
		

Crossrefs

Cf. A135356.

Formula

T(p,p) = 3 if p odd, =1 if p even. T(p,s) = (-1)^(s+1)*A014410(p,s), s
Sum_{s=0..p} T(p,s) = 3.
Sum_{s=0..p} |T(p,s)| = A062510(n+1).

Extensions

Edited by R. J. Mathar, Mar 02 2010

A141775 Binomial transform of (1, 2, 0, 1, 2, 0, 1, 2, 0, ...).

Original entry on oeis.org

1, 3, 5, 8, 15, 31, 64, 129, 257, 512, 1023, 2047, 4096, 8193, 16385, 32768, 65535, 131071, 262144, 524289, 1048577, 2097152, 4194303, 8388607, 16777216, 33554433, 67108865, 134217728, 268435455, 536870911, 1073741824, 2147483649, 4294967297, 8589934592, 17179869183
Offset: 0

Author

Gary W. Adamson, Jul 03 2008

Keywords

Comments

From Paul Curtz, Jun 15 2011: (Start)
A square array of a(n) and its higher order differences is defined by T(0,k) = a(k) and T(n,k) = T(n-1,k+1)-T(n-1,k):
1, 3, 5, 8, 15, 31,
2, 2, 3, 7, 16, 33,
0, 1, 4, 9, 17, 32, see A130785(n).
1, 3, 5, 8, 15, 31,
2, 2, 3, 7, 16, 33,
a(n) is identical to its third differences: T(n+3,k) = T(n,k).
The main diagonal is T(n,n) = 2^n. Subdiagonals are T(n,n-1) = A014551(n) and T(n,n-2) = A062510(n).
(End)

Examples

			a(4) = 8 = (1, 2, 0, 1) dot (1, 3, 3, 1) = (1 + 6 + 0 + 1).
		

Crossrefs

Programs

  • Magma
    I:=[1,3,5]; [n le 3 select I[n] else 3*Self(n-1) - 3*Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Jan 15 2018
  • Mathematica
    LinearRecurrence[{3,-3,2},{1,3,5},40] (* Harvey P. Dale, May 29 2012 *)
  • PARI
    x='x+O('x^30); Vec((x-1)*(1+x)/((2*x-1)*(x^2-x+1))) \\ G. C. Greubel, Jan 15 2018
    

Formula

From Paul Curtz, Jun 15 2011: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3).
a(n) = 2^n - A128834(n).
a(n) - 2a(n-1)= A057079(n+1).
a(n) + a(n+3) = 9*2^n.
a(n+6) - a(n) = 63*2^n.
a(n) = A130785(n) - A130785(n-1). (End)
G.f.: (x-1)*(1+x) / ( (2*x-1)*(x^2-x+1) ). - R. J. Mathar, Jun 22 2011
a(n) = 2^n + (2*sin((Pi*n)/3))/sqrt(3). - Colin Barker, Feb 10 2017

A330863 Decimal expansion of Product_{k>=1} (1 + 1/(-2)^k).

Original entry on oeis.org

5, 6, 8, 6, 9, 8, 9, 4, 6, 2, 6, 5, 4, 2, 8, 5, 0, 5, 9, 5, 4, 9, 7, 6, 7, 3, 7, 0, 7, 4, 4, 4, 4, 6, 5, 4, 2, 9, 0, 8, 5, 2, 4, 5, 1, 3, 8, 9, 3, 5, 9, 0, 2, 9, 3, 1, 9, 3, 4, 4, 0, 4, 6, 0, 1, 8, 3, 5, 3, 5, 6, 3, 2, 3, 0, 9, 1, 2, 6, 4, 0, 9, 6, 1, 4, 6, 4, 4, 1, 1, 7, 3, 0, 6, 1, 4, 8, 6, 0, 4, 8, 0, 2, 7, 2, 6, 9, 4, 1, 8
Offset: 0

Author

Ilya Gutkovskiy, Apr 28 2020

Keywords

Examples

			(1 - 1/2) * (1 + 1/2^2) * (1 - 1/2^3) * (1 + 1/2^4) * (1 - 1/2^5) * ... = 0.568698946265428505954976737...
		

Programs

  • Mathematica
    RealDigits[QPochhammer[-1, -1/2]/2, 10, 110] [[1]]
    N[3/QPochhammer[-2, 1/4], 120] (* Vaclav Kotesovec, Apr 28 2020 *)
  • PARI
    prodinf(k=1, 1 + 1/(-2)^k) \\ Michel Marcus, Apr 28 2020

Formula

Equals Product_{k>=1} 1/(1 + 1/2^(2*k-1)).
Equals exp(Sum_{k>=1} A000593(k)/(k*(-2)^k)).
From Peter Bala, Dec 15 2020: (Start)
Constant C = (2/3) - (1/3)*Sum_{n >= 0} (-1)^n * 2^(n^2)/( Product_{k = 1..n+1} 4^k - 1 ).
C = Sum_{n >= 0} 1/( Product_{k = 1..n} (-2)^k - 1 ) = 1 - 1/3 - 1/9 + 1/81 + 1/1215 - - + + ... = Sum_{n >= 0} 1/A216206(n).
C = 1 + Sum_{n >= 0} (-1/2)^(n+1)*Product_{k = 1..n} (1 + (-1/2)^k).
3*C = 2 - Sum_{n >= 0} (1/4)^(n+1)*Product_{k = 1..n} (1 + (-1/2)^k).
9*C = 5 - Sum_{n >= 0} (-1/8)^(n+1)*Product_{k = 1..n} (1 + (-1/2)^k).
81*C = 46 + Sum_{n >= 0} (1/16)^(n+1)*Product_{k = 1..n} (1 + (-1/2)^k).
1215*C = 691 + Sum_{n >= 0} (-1/32)^(n+1)*Product_{k = 1..n} (1 + (-1/2)^k).
The sequence [1, 2, 5, 46, 691, ...] is the sequence of numerators of the partial sums of the series Sum_{n >= 0} 1/A216206(n). (End)

A323210 a(n) = 9*J(n)^2 where J(n) are the Jacobsthal numbers A001045 with J(0) = 1.

Original entry on oeis.org

1, 9, 9, 81, 225, 1089, 3969, 16641, 65025, 263169, 1046529, 4198401, 16769025, 67125249, 268402689, 1073807361, 4294836225, 17180131329, 68718952449, 274878955521, 1099509530625, 4398050705409, 17592177655809, 70368760954881, 281474943156225, 1125899973951489
Offset: 0

Author

Peter Luschny, Jan 09 2019

Keywords

Comments

Colin Barker conjectures that A208556 is a shifted version of this sequence.

Programs

  • Maple
    gf := (8*x^3 - 24*x^2 + 6*x + 1)/((4*x - 1)*(2*x + 1)*(x - 1)):
    ser := series(gf,x,32): seq(coeff(ser,x,n), n=0..25);
  • Mathematica
    LinearRecurrence[{3, 6, -8}, {1, 9, 9, 81}, 25]
  • Sage
    # Demonstrates the product formula.
    CC = ComplexField(200)
    def t(n,k): return CC(3)*cos(CC(pi*k/n)) - CC(i)*sin(CC(pi*k/n))
    def T(n,k): return t(n,k)*(t(n,k).conjugate())
    def a(n): return prod(T(n,k) for k in (1..n))
    print([a(n).real().round() for n in (0..29)])

Formula

a(n) = Product_{k=1..n} T(n, k) where T(n, k) = t(n,k)*conjugate(t(n,k)) and t(n,k) = 3*cos(Pi*k/n) - i*sin(Pi*k/n), i is the imaginary unit.
a(n) = [x^n] (8*x^3 - 24*x^2 + 6*x + 1)/((4*x - 1)*(2*x + 1)*(x - 1)).
a(n) = n! [x^n] (1 + exp(x) - 2*exp(-2*x) + exp(4*x)).
a(n) = 3*a(n-1) + 6*a(n-2) - 8*a(n-3) for n >= 4.
A062510(n) = sqrt(a(n)) for n > 0.
a(n) = 4^n-2*(-2)^n+1, n>0. - R. J. Mathar, Mar 06 2022
Previous Showing 31-34 of 34 results.