cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A138732 Continued fraction for 8th Du Bois Reymond constant.

Original entry on oeis.org

0, 99232, 2, 6, 1, 3, 4, 2, 1, 2, 1, 16, 8, 2, 57, 13, 2, 1, 16, 1, 1, 6, 5, 5, 1, 1, 6, 1, 1, 3, 1, 1, 2, 9, 18, 1, 8, 15, 2, 2, 1, 2, 1, 2, 1, 5, 2, 3, 5, 1, 3, 4, 17, 11, 1, 2, 1, 6, 1, 2, 3, 15, 3, 12, 1, 8, 6, 1, 1, 1, 2, 4, 29, 44, 1, 1, 7, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 22, 1, 2, 5, 8, 2, 2, 5, 2
Offset: 1

Views

Author

Artur Jasinski, Mar 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^4), {x, I}]]], 100] (* Artur Jasinski *)
  • PARI
    contfrac((3*exp(8) - 24*exp(6) + 36*exp(4) - 8*exp(2)  - 1167)/384) \\ Michel Marcus, Sep 09 2013

A138733 Second term of continued fraction for 2n-th Du Bois Reymond constant.

Original entry on oeis.org

5, 190, 4531, 99232, 2125044, 45190209, 958768567, 20325471335, 430773893366, 9128872855695, 193450867955197, 4099389985205820, 86869246502331992, 1840823999333339814, 39008411877876819180, 826616742911186406242
Offset: 1

Views

Author

Artur Jasinski, Mar 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[AppendTo[a,Last[ContinuedFraction[FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^n), {x,I}]]], 2]]], {n, 1, 9}]; a (*Artur Jasinski*)

Formula

a(n) = floor(1/C(2n)), where C(2n) is the 2n-th Du Bois Reymond constant. [From Max Alekseyev, Sep 15 2009]

Extensions

Extended by Max Alekseyev, Sep 15 2009

A255272 Decimal expansion of the second smallest positive root of tan(x) = x.

Original entry on oeis.org

7, 7, 2, 5, 2, 5, 1, 8, 3, 6, 9, 3, 7, 7, 0, 7, 1, 6, 4, 1, 9, 5, 0, 6, 8, 9, 3, 3, 0, 6, 2, 9, 8, 6, 6, 2, 6, 3, 7, 8, 1, 5, 9, 3, 0, 4, 6, 1, 0, 7, 9, 1, 1, 8, 6, 6, 4, 9, 3, 2, 8, 2, 1, 6, 7, 2, 9, 6, 4, 5, 0, 0, 1, 6, 8, 2, 6, 8, 8, 8, 1, 6, 1, 8, 4, 5, 0, 4, 8, 4, 5, 7, 4, 0, 6, 9, 5, 7, 8, 6, 9, 7
Offset: 1

Views

Author

Jean-François Alcover, Feb 20 2015

Keywords

Comments

This constant is quite close to 5*Pi/2 - 1/8 = 7.72898...
Searching for solutions x=k*Pi+Pi/2-e and small e, for k=1,2,3.... means via the approximation tan(x) = 1/e-e/3-e^3/45... that e is approximately 1/(k*Pi+Pi/2), so the constants x are close to k*Pi+Pi/2-1/(k*Pi+Pi/2). Here k=2 and the constant is close to 5*Pi/2-2/(5*Pi) = 7.7266576... - R. J. Mathar, Jul 11 2024

Examples

			7.72525183693770716419506893306298662637815930461...
		

Crossrefs

Cf. A115365 (smallest positive root), A062546 (C_2 = 2nd du Bois-Reymond constant), A224196 (C_3), A207528 (C_4), A243108 (C_5), A245333 (C_6).

Programs

  • Mathematica
    xi[n_] := x /. FindRoot[Tan[x] == x, {x, n*Pi + Pi/2 - 1/(4*n)}, WorkingPrecision -> 102]; RealDigits[xi[2]] // First
  • PARI
    solve(x=7,7.8,tan(x)-x) \\ Charles R Greathouse IV, Apr 20 2016

A104053 Triangle of coefficients in the numerators of rational functions in tanh(1) that express the (2n)th du Bois-Reymond constants as C_0 = 0, C_2 = -4 - 1/(1-tanh(1)), for n>1, C_2n = -3 - (Sum_{k=0..n} a(n,k)*tanh(1)^k) / (2^n*n! * (1-tanh(1))^n).

Original entry on oeis.org

0, 1, 0, 1, -1, -1, -1, 0, 0, 3, 1, -5, 18, -13, -7, -11, 70, -135, 65, -10, 45, 111, -609, 1215, -1350, 1275, -621, -141, -1009, 6188, -16758, 27335, -26845, 12474, -2548, 1883, 10977, -81353, 270004, -511791, 584710, -420287, 216468, -70169, -3599, -146691, 1248210, -4715217, 10303461, -14439411
Offset: 0

Views

Author

Gerald McGarvey, Mar 02 2005

Keywords

Comments

For n>0 the row sums = (-1)^(n-1) * (n-1)! For n odd, the sum of the absolute values of the coefficients in the n-th row = (2*(n-1))!/n! (every other entry of A001761).
The sum of the (2n)th du Bois-Reymond constants = 1/5 or is very close to 1/5.
For the 6th and 9th rows, the coefficients were adjusted from results of the residue evaluations so that double factorials ((2n)!! = 2^n*n! (A000165)) are in the denominators. For the 6th row they were multiplied by 3, for the 9th row they were multiplied by 9.
For n>1, Sum_{k=0..n} (n-k+1)*a(n,k) = (-1)^(n)*A001286(n-1) [A001286 are Lah numbers: (n-1)*n!/2].

Crossrefs

Programs

  • Mathematica
    Table[2 Residue[x^2/((1+x^2)^n (Tan[x]-x)), {x, I}], {n, 0, 9}]

Formula

For n>1, C_2n = -3 - 2 * Residue_{x=i} (x^2/((1+x^2)^n * (tan(x) - x))) (see MathWorld article).
For n>1, Sum_{k=0..n} (-1)^(n+k)*a(n, k) = (2*(n-1))!/n! (i.e., A001761(n-1)).

Extensions

Added the keyword tabl Gerald McGarvey, Aug 20 2009

A338670 Decimal expansion of the sum of the negative and positive local extreme values of the sinc function for x > 0 (negated).

Original entry on oeis.org

1, 4, 0, 8, 5, 9
Offset: 0

Views

Author

Bernard Schott, Apr 23 2021

Keywords

Comments

The equation of the sinc function is y = sin(x)/x.
Equivalently, sum of f(x) = sinc(x) where x > 0 and f'(x) = 0. - David A. Corneth, May 01 2021
These extreme values are obtained when x_k > 0 is a solution to tan(x) = x (see Chronomath link), or equivalently to y = tanc(x) = tan(x)/x = 1. The corresponding k-th extreme value is y_k = sin(x_k)/x_k.
Every extremum y_k = (-1)^k/(k*Pi) + O(1/k^2), hence the series Sum_{k > 0} sin(x_k)/x_k is convergent.
However, this series is not absolutely convergent, just as (C_1)/2 diverges where C_1 is the corresponding du Bois-Reymond constant.

Examples

			-0.140859...
		

References

  • Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.3.18, pp. 285 and 303.

Crossrefs

Coordinates of the 1st extremum: A115365 (x_1), A213053 (y_1).

Formula

Equals Sum_{k >= 1} sinc(x_k) or Sum_{k >= 1} (-1)^k / sqrt(1+(x_k)^2), where x_k is the k-th positive root of x = tan(x).

Extensions

More terms from Amiram Eldar, Apr 23 2021
Name clarified by N. J. A. Sloane, May 01 2021
Previous Showing 11-15 of 15 results.