A254363
a(n) = 4^n + 6*2^n + 3^(n+1) + 10.
Original entry on oeis.org
20, 35, 77, 203, 605, 1955, 6677, 23723, 86765, 324275, 1231877, 4738043, 18396125, 71940995, 282882677, 1116985163, 4424500685, 17568076115, 69883311077, 278367837083, 1109978272445, 4429440153635, 17686354389077, 70651224045803, 282322365983405, 1128441973997555, 4511225627508677, 18037276107243323, 72126226025905565
Offset: 0
-
Table[4^n + 6*2^n + 3^(n + 1) + 10, {n, 0, 28}] (* Michael De Vlieger, Jan 30 2015 *)
-
vector(30, n, n--; 4^n + 6*2^n + 3^(n+1) + 10) \\ Colin Barker, Jan 30 2015
A256994
a(n) = n + 1 when n <= 3, otherwise a(n) = 2^(n-2) + 3; also iterates of A005187 starting from a(1) = 2.
Original entry on oeis.org
2, 3, 4, 7, 11, 19, 35, 67, 131, 259, 515, 1027, 2051, 4099, 8195, 16387, 32771, 65539, 131075, 262147, 524291, 1048579, 2097155, 4194307, 8388611, 16777219, 33554435, 67108867, 134217731, 268435459, 536870915, 1073741827, 2147483651, 4294967299, 8589934595, 17179869187, 34359738371, 68719476739, 137438953475, 274877906947
Offset: 1
-
Table[If[n<4,n+1,2^(n-2)+3],{n,40}] (* Harvey P. Dale, May 14 2019 *)
-
A256994(n) = if(n < 4, n+1, 2^(n-2) + 3);
-
\\ By iterating A005187:
A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
i=1; k=2; print1(k); while(i <= 40, k = A005187(k); print1(", ", k); i++);
-
(define (A256994 n) (if (< n 4) (+ n 1) (+ (A000079 (- n 2)) 3)))
-
;; The following uses memoization-macro definec:
(definec (A256994 n) (if (= 1 n) 2 (A005187 (A256994 (- n 1)))))
A340666
A(n,k) is derived from n by replacing each 0 in its binary representation with a string of k 0's; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 4, 3, 1, 0, 1, 8, 3, 4, 3, 0, 1, 16, 3, 16, 5, 3, 0, 1, 32, 3, 64, 9, 6, 7, 0, 1, 64, 3, 256, 17, 12, 7, 1, 0, 1, 128, 3, 1024, 33, 24, 7, 8, 3, 0, 1, 256, 3, 4096, 65, 48, 7, 64, 9, 3, 0, 1, 512, 3, 16384, 129, 96, 7, 512, 33, 10, 7
Offset: 0
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 4, 8, 16, 32, 64, 128, 256, ...
3, 3, 3, 3, 3, 3, 3, 3, 3, ...
1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, ...
3, 5, 9, 17, 33, 65, 129, 257, 513, ...
3, 6, 12, 24, 48, 96, 192, 384, 768, ...
7, 7, 7, 7, 7, 7, 7, 7, 7, ...
1, 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216, ...
...
Rows n=0..17, 19 give:
A000004,
A000012,
A000079,
A010701,
A000302,
A000051(k+1),
A007283,
A010727,
A001018,
A087289,
A007582(k+1),
A062709(k+2),
A164346,
A181565(k+1),
A005009,
A181404(k+3),
A001025,
A199493,
A253208(k+1).
-
A:= (n, k)-> Bits[Join](subs(0=[0$k][], Bits[Split](n))):
seq(seq(A(n, d-n), n=0..d), d=0..12);
# second Maple program:
A:= proc(n, k) option remember; `if`(n<2, n,
`if`(irem(n, 2, 'r')=1, A(r, k)*2+1, A(r, k)*2^k))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
A[n_, k_] := FromDigits[IntegerDigits[n, 2] /. 0 -> Sequence @@ Table[0, {k}], 2];
Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 02 2021 *)
A363000
a(n) = numerator(R(n, n, 1)), where R are the rational polynomials R(n, k, x) = Sum_{u=0..k} ( Sum_{j=0..u} x^j * binomial(u, j) * (j + 1)^n ) / (u + 1).
Original entry on oeis.org
1, 5, 19, 188, 1249, 125744, 283517, 303923456, 138604561, 599865008128, 118159023973, 7078040993755136, 155792758736921, 146303841678548271104, 294014633772018349, 64670474732430319157248, 752324747622089633569, 3224753626003393505960919040, 2507759850059601711479669
Offset: 0
a(n) are the numerators of the terms on the main diagonal of the triangle:
[0] 1;
[1] 1, 5/2;
[2] 1, 7/2, 19/2;
[3] 1, 11/2, 121/6, 188/3;
[4] 1, 19/2, 95/2, 369/2, 1249/2;
[5] 1, 35/2, 721/6, 1748/3, 35164/15, 125744/15;
[6] 1, 67/2, 639/2, 3877/2, 18533/2, 76317/2, 283517/2;
-
# For better context we put A362998, A362999, A363000, and A363001 together here.
R := (n, k, x) -> add(add(x^j*binomial(u, j)*(j+1)^n, j=0..u)/(u + 1), u=0..k):
### x = 1 -> this sequence
for n from 0 to 7 do [n], seq(R(n, k, 1), k = 0..n) od;
seq(R(n, n, 1), n = 0..9);
A363000 := n -> numer(R(n, n, 1)): seq(A363000(n), n = 0..10);
A363001 := n -> denom(R(n, n, 1)): seq(A363001(n), n = 0..20);
A362999 := n -> denom(R(2*n+1, 2*n+1, 1)): seq(A362999(n), n = 0..11);
A362998 := n -> add(R(2*n, k, 1), k = 0..2*n): seq(A362998(n), n = 0..9);
### x = -1 -> Bernoulli(n, 1)
# for n from 0 to 9 do [n], seq(R(n, k,-1), k = 0..n) od;
# seq(R(n, n, -1), n = 0..12); seq(bernoulli(n, 1), n = 0..12);
### x = 0 -> Harmonic numbers
# for n from 0 to 9 do [n], seq(R(n, k, 0), k = 0..n) od;
# seq(R(n, n, 0), n = 0..9); seq(harmonic(n+1), n = 0..9);
A242475
a(n) = 2^n + 8.
Original entry on oeis.org
9, 10, 12, 16, 24, 40, 72, 136, 264, 520, 1032, 2056, 4104, 8200, 16392, 32776, 65544, 131080, 262152, 524296, 1048584, 2097160, 4194312, 8388616, 16777224, 33554440, 67108872, 134217736, 268435464, 536870920, 1073741832
Offset: 0
-
[2^n+8: n in [0..40]];
-
Table[2^n + 8, {n, 0, 40}] (* or *) CoefficientList[Series[(9 - 17 x)/((1 - x) (1 - 2 x)),{x, 0, 30}], x]
LinearRecurrence[{3,-2},{9,10},40] (* Harvey P. Dale, May 21 2025 *)
A246139
a(n) = 2^n + 10.
Original entry on oeis.org
11, 12, 14, 18, 26, 42, 74, 138, 266, 522, 1034, 2058, 4106, 8202, 16394, 32778, 65546, 131082, 262154, 524298, 1048586, 2097162, 4194314, 8388618, 16777226, 33554442, 67108874, 134217738, 268435466, 536870922, 1073741834, 2147483658, 4294967306
Offset: 0
Cf. Sequences of the form 2^n + k:
A000079 (k=0),
A000051 (k=1),
A052548 (k=2),
A062709 (k=3),
A140504 (k=4),
A168614 (k=5),
A153972 (k=6),
A168415 (k=7),
A242475 (k=8),
A188165 (k=9), this sequence (k=10).
-
[2^n+10: n in [0..40]];
-
Table[2^n + 10, {n, 0, 40}]
-
vector(50, n, 2^(n-1)+10) \\ Derek Orr, Aug 18 2014
A328974
Trajectory of 1496 under repeated application of the map defined in A053392.
Original entry on oeis.org
1496, 51315, 6446, 10810, 1891, 91710, 10881, 18169, 99715, 181686, 9971414, 18168555, 99714131010, 181685544111, 99714131098522, 18168554419171374, 99714131098510108841011, 1816855441917136111816125112, 99714131098510108849722997737623, 1816855441917136111816121316941118161410101385
Offset: 1
-
NestList[FromDigits[Flatten[{IntegerDigits[Total[Partition[IntegerDigits[#], 2, 1], {2}]]}]] &, 1496, 20] (* Paolo Xausa, Jan 10 2025 *)
A134250
Expansion of x*(4+9*x-7*x^2) / ((1-x)*(1+3*x-x^2)).
Original entry on oeis.org
4, 1, 7, -14, 55, -173, 580, -1907, 6307, -20822, 68779, -227153, 750244, -2477879, 8183887, -27029534, 89272495, -294847013, 973813540, -3216287627, 10622676427, -35084316902, 115875627139, -382711198313, 1264009222084, -4174738864559, 13788225815767
Offset: 1
-
A134250 := proc(n)
2-17*(-1)^n*A006190(n)+5*(-1)^n*A006190(n+1) ;
end proc:
seq(A134250(n),n=1..10) ; # R. J. Mathar, Dec 06 2011
-
LinearRecurrence[{-2,4,-1},{4,1,7},30] (* Harvey P. Dale, Aug 15 2015 *)
Rest@ CoefficientList[Series[x (4 + 9 x - 7 x^2)/((1 - x) (1 + 3 x - x^2)), {x, 0, 27}], x] (* Michael De Vlieger, May 16 2017 *)
-
Vec(x*(4+9*x-7*x^2)/((1-x)*(1+3*x-x^2)) + O(x^30)) \\ Colin Barker, May 16 2017
A245179
Numbers of the form 2^k+3 or 3*2^k+1, k >= 2.
Original entry on oeis.org
7, 11, 13, 19, 25, 35, 49, 67, 97, 131, 193, 259, 385, 515, 769, 1027, 1537, 2051, 3073, 4099, 6145, 8195, 12289, 16387, 24577, 32771, 49153, 65539, 98305, 131075, 196609, 262147, 393217, 524291, 786433, 1048579, 1572865, 2097155, 3145729, 4194307, 6291457
Offset: 1
-
&cat [[3*2^i+1,2^(i+2)+3]: i in [1..30]]; // Bruno Berselli, Jul 23 2014
-
CoefficientList[Series[- (14 x^3 + 8 x^2 - 11 x - 7)/((x - 1) (x + 1) (2 x^2 - 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Jul 23 2014 *)
LinearRecurrence[{0,3,0,-2},{7,11,13,19},50] (* Harvey P. Dale, Mar 05 2015 *)
A254463
a(n) = 15*2^n + 6*4^n + 10*3^n + 3*5^n + 6^n + 21.
Original entry on oeis.org
56, 126, 378, 1386, 5778, 26226, 126378, 636426, 3314178, 17714466, 96660378, 536249466, 3015243378, 17141522706, 98333399178, 568324150506, 3305074833378, 19319850386946, 113420243462778, 668241096915546, 3948892688324178, 23393955029043186, 138880128205091178
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Luciano Ancora, Demonstration of formulas, page 2.
- Luciano Ancora, Recurrence relations for partial sums of m-th powers.
- Index entries for linear recurrences with constant coefficients, signature (21,-175,735,-1624,1764,-720).
-
Table[15 2^n + 6 4^n + 10 3^n + 3 5^n + 6^n + 21, {n, 0, 25}] (* Michael De Vlieger, Jan 31 2015 *)
-
vector(30, n, n--; 15*2^n + 6*4^n + 10*3^n + 3*5^n + 6^n + 21) \\ Colin Barker, Jan 31 2015
Comments