cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A254363 a(n) = 4^n + 6*2^n + 3^(n+1) + 10.

Original entry on oeis.org

20, 35, 77, 203, 605, 1955, 6677, 23723, 86765, 324275, 1231877, 4738043, 18396125, 71940995, 282882677, 1116985163, 4424500685, 17568076115, 69883311077, 278367837083, 1109978272445, 4429440153635, 17686354389077, 70651224045803, 282322365983405, 1128441973997555, 4511225627508677, 18037276107243323, 72126226025905565
Offset: 0

Views

Author

Luciano Ancora, Jan 29 2015

Keywords

Comments

This is the sequence of fourth terms of "third partial sums of m-th powers".

Crossrefs

Programs

  • Mathematica
    Table[4^n + 6*2^n + 3^(n + 1) + 10, {n, 0, 28}] (* Michael De Vlieger, Jan 30 2015 *)
  • PARI
    vector(30, n, n--; 4^n + 6*2^n + 3^(n+1) + 10) \\ Colin Barker, Jan 30 2015

Formula

From Colin Barker, Jan 30 2015: (Start)
G.f.: -(342*x^3-427*x^2+165*x-20)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)).
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4) for n > 3. (End)
E.g.f.: exp(x)*(exp(3*x) + 3*exp(2*x) + 6*exp(x) + 10). - Elmo R. Oliveira, Sep 12 2024

A256994 a(n) = n + 1 when n <= 3, otherwise a(n) = 2^(n-2) + 3; also iterates of A005187 starting from a(1) = 2.

Original entry on oeis.org

2, 3, 4, 7, 11, 19, 35, 67, 131, 259, 515, 1027, 2051, 4099, 8195, 16387, 32771, 65539, 131075, 262147, 524291, 1048579, 2097155, 4194307, 8388611, 16777219, 33554435, 67108867, 134217731, 268435459, 536870915, 1073741827, 2147483651, 4294967299, 8589934595, 17179869187, 34359738371, 68719476739, 137438953475, 274877906947
Offset: 1

Views

Author

Antti Karttunen, Apr 15 2015

Keywords

Comments

Note that if we instead iterated function b(n) = 1+A005187(n), from b(1) onward, we would get the powers of two, A000079.

Crossrefs

Topmost row of A256995, leftmost column of A256997.

Programs

  • Mathematica
    Table[If[n<4,n+1,2^(n-2)+3],{n,40}] (* Harvey P. Dale, May 14 2019 *)
  • PARI
    A256994(n) = if(n < 4, n+1, 2^(n-2) + 3);
    
  • PARI
    \\ By iterating A005187:
    A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
    i=1; k=2; print1(k); while(i <= 40, k = A005187(k); print1(", ", k); i++);
    
  • Scheme
    (define (A256994 n) (if (< n 4) (+ n 1) (+ (A000079 (- n 2)) 3)))
    
  • Scheme
    ;; The following uses memoization-macro definec:
    (definec (A256994 n) (if (= 1 n) 2 (A005187 (A256994 (- n 1)))))

Formula

If n < 4, a(n) = n + 1, otherwise a(n) = 2^(n-2) + 3 = A062709(n-2).
a(1) = 2; for n > 1, a(n) = A005187(a(n-1)).

A340666 A(n,k) is derived from n by replacing each 0 in its binary representation with a string of k 0's; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 4, 3, 1, 0, 1, 8, 3, 4, 3, 0, 1, 16, 3, 16, 5, 3, 0, 1, 32, 3, 64, 9, 6, 7, 0, 1, 64, 3, 256, 17, 12, 7, 1, 0, 1, 128, 3, 1024, 33, 24, 7, 8, 3, 0, 1, 256, 3, 4096, 65, 48, 7, 64, 9, 3, 0, 1, 512, 3, 16384, 129, 96, 7, 512, 33, 10, 7
Offset: 0

Views

Author

Alois P. Heinz, Jan 15 2021

Keywords

Examples

			Square array A(n,k) begins:
  0, 0,  0,   0,    0,     0,      0,       0,        0, ...
  1, 1,  1,   1,    1,     1,      1,       1,        1, ...
  1, 2,  4,   8,   16,    32,     64,     128,      256, ...
  3, 3,  3,   3,    3,     3,      3,       3,        3, ...
  1, 4, 16,  64,  256,  1024,   4096,   16384,    65536, ...
  3, 5,  9,  17,   33,    65,    129,     257,      513, ...
  3, 6, 12,  24,   48,    96,    192,     384,      768, ...
  7, 7,  7,   7,    7,     7,      7,       7,        7, ...
  1, 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216, ...
  ...
		

Crossrefs

Columns k=0-2, 4 give: A038573, A001477, A084471, A084473.
Rows n=0..17, 19 give: A000004, A000012, A000079, A010701, A000302, A000051(k+1), A007283, A010727, A001018, A087289, A007582(k+1), A062709(k+2), A164346, A181565(k+1), A005009, A181404(k+3), A001025, A199493, A253208(k+1).
Main diagonal gives A340667.

Programs

  • Maple
    A:= (n, k)-> Bits[Join](subs(0=[0$k][], Bits[Split](n))):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    A:= proc(n, k) option remember; `if`(n<2, n,
         `if`(irem(n, 2, 'r')=1, A(r, k)*2+1, A(r, k)*2^k))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := FromDigits[IntegerDigits[n, 2] /. 0 -> Sequence @@ Table[0, {k}], 2];
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 02 2021 *)

Formula

A000120(A(n,k)) = A000120(n) = log_2(A(n,0)+1).
A023416(A(n,k)) = k * A023416(n) for n >= 1.

A363000 a(n) = numerator(R(n, n, 1)), where R are the rational polynomials R(n, k, x) = Sum_{u=0..k} ( Sum_{j=0..u} x^j * binomial(u, j) * (j + 1)^n ) / (u + 1).

Original entry on oeis.org

1, 5, 19, 188, 1249, 125744, 283517, 303923456, 138604561, 599865008128, 118159023973, 7078040993755136, 155792758736921, 146303841678548271104, 294014633772018349, 64670474732430319157248, 752324747622089633569, 3224753626003393505960919040, 2507759850059601711479669
Offset: 0

Views

Author

Peter Luschny, May 12 2023

Keywords

Comments

R(n, n, 0) are the (0-based) harmonic numbers, R(n, n, -1) are the Bernoulli numbers, and R(n, n, 1) is this sequence in its rational form.

Examples

			a(n) are the numerators of the terms on the main diagonal of the triangle:
[0] 1;
[1] 1,  5/2;
[2] 1,  7/2,  19/2;
[3] 1, 11/2, 121/6,  188/3;
[4] 1, 19/2,  95/2,  369/2,   1249/2;
[5] 1, 35/2, 721/6, 1748/3, 35164/15, 125744/15;
[6] 1, 67/2, 639/2, 3877/2,  18533/2,   76317/2, 283517/2;
		

Crossrefs

Cf. A363001 (denominators), A362999 (odd-indexed denominators), A362998.

Programs

  • Maple
    # For better context we put A362998, A362999, A363000, and A363001 together here.
    R := (n, k, x) -> add(add(x^j*binomial(u, j)*(j+1)^n, j=0..u)/(u + 1), u=0..k):
    ### x = 1 -> this sequence
     for n from 0 to 7 do [n], seq(R(n, k, 1), k = 0..n) od;
     seq(R(n, n, 1), n = 0..9);
     A363000 := n -> numer(R(n, n, 1)): seq(A363000(n), n = 0..10);
     A363001 := n -> denom(R(n, n, 1)): seq(A363001(n), n = 0..20);
     A362999 := n -> denom(R(2*n+1, 2*n+1, 1)): seq(A362999(n), n = 0..11);
     A362998 := n -> add(R(2*n, k, 1), k = 0..2*n): seq(A362998(n), n = 0..9);
    ### x = -1 -> Bernoulli(n, 1)
    # for n from 0 to 9 do [n], seq(R(n, k,-1), k = 0..n) od;
    # seq(R(n, n, -1), n = 0..12); seq(bernoulli(n, 1), n = 0..12);
    ### x = 0 -> Harmonic numbers
    # for n from 0 to 9 do [n], seq(R(n, k, 0), k = 0..n) od;
    # seq(R(n, n, 0), n = 0..9); seq(harmonic(n+1), n = 0..9);

Formula

Sum_{k=0..n} R(n, k, 0) = Sum_{j=0..n} (n-j+1)/(j+1) = (n+2)*Harmonic(n+1)-n-1.
Sum_{k=0..n} R(n, k,-1) = (n + 2 - 0^n) * Bernoulli(n, 1).
Sum_{k=0..2*n} R(2*n, k, 1) = A362998(n).
2*R(n, 1, 1) = A062709(n).

A242475 a(n) = 2^n + 8.

Original entry on oeis.org

9, 10, 12, 16, 24, 40, 72, 136, 264, 520, 1032, 2056, 4104, 8200, 16392, 32776, 65544, 131080, 262152, 524296, 1048584, 2097160, 4194312, 8388616, 16777224, 33554440, 67108872, 134217736, 268435464, 536870920, 1073741832
Offset: 0

Views

Author

Vincenzo Librandi, May 20 2014

Keywords

Crossrefs

Programs

  • Magma
    [2^n+8: n in [0..40]];
  • Mathematica
    Table[2^n + 8, {n, 0, 40}] (* or *) CoefficientList[Series[(9 - 17 x)/((1 - x) (1 - 2 x)),{x, 0, 30}], x]
    LinearRecurrence[{3,-2},{9,10},40] (* Harvey P. Dale, May 21 2025 *)

Formula

G.f.: (9 - 17*x)/((1 - x)*(1 - 2*x)).
a(n) = 2*a(n-1) - 8 = 3*a(n-1) - 2*a(n-2).
a(n) = A052548(n)+6 = A140504(n)+4 = A153972(n)+2.
E.g.f.: exp(2*x) + 8*exp(x). - Elmo R. Oliveira, Nov 11 2023

A246139 a(n) = 2^n + 10.

Original entry on oeis.org

11, 12, 14, 18, 26, 42, 74, 138, 266, 522, 1034, 2058, 4106, 8202, 16394, 32778, 65546, 131082, 262154, 524298, 1048586, 2097162, 4194314, 8388618, 16777226, 33554442, 67108874, 134217738, 268435466, 536870922, 1073741834, 2147483658, 4294967306
Offset: 0

Views

Author

Vincenzo Librandi, Aug 18 2014

Keywords

Comments

First trisection of A085688. [Bruno Berselli, Aug 19 2014]

Crossrefs

Cf. Sequences of the form 2^n + k: A000079 (k=0), A000051 (k=1), A052548 (k=2), A062709 (k=3), A140504 (k=4), A168614 (k=5), A153972 (k=6), A168415 (k=7), A242475 (k=8), A188165 (k=9), this sequence (k=10).
Cf. A085688.

Programs

  • Magma
    [2^n+10: n in [0..40]];
    
  • Mathematica
    Table[2^n + 10, {n, 0, 40}]
  • PARI
    vector(50, n, 2^(n-1)+10) \\ Derek Orr, Aug 18 2014

Formula

G.f.: (11 - 21*x)/(1 - 3*x + 2*x^2).
a(n) = A000079(n) + 10.
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1.
E.g.f.: exp(2*x) + 10*exp(x). - Elmo R. Oliveira, Nov 11 2023

A328974 Trajectory of 1496 under repeated application of the map defined in A053392.

Original entry on oeis.org

1496, 51315, 6446, 10810, 1891, 91710, 10881, 18169, 99715, 181686, 9971414, 18168555, 99714131010, 181685544111, 99714131098522, 18168554419171374, 99714131098510108841011, 1816855441917136111816125112, 99714131098510108849722997737623, 1816855441917136111816121316941118161410101385
Offset: 1

Views

Author

N. J. A. Sloane, Nov 01 2019

Keywords

Comments

1496 is the smallest number whose trajectory under A053392 increases without limit.
More terms than usual are shown in order to display the onset of exponential growth.
Proof that this grows without limit, from Hans Havermann, Nov 01 2019: (Start)
One way to prove that the trajectory of a number under repeated application of the map defined in A053392 increases without limit is to show that there exists a term containing a non-final substring of three adjacent 9's.
If such a substring in term n is followed by a 0, it will grow to a non-final substring of three adjacent 9's followed by a 1 in term n+2: *9990* --> *18189* --> *99917*
If such a substring in term n is followed by a digit d that is neither 0 nor 9, it will grow to a non-final substring of four adjacent 9's in term n+2: *999d* --> *18181(d-1)* --> *9999d*
If such a substring in term n is followed by another 9, then it is a substring of k 9's for k >= 4, which will grow to a substring of (2k-3) 9's in term n+2: *[9]^d* --> *[18]^(d-1)* --> *[9]^(2d-3)*
Putting those together, such a substring in term n will grow to four adjacent 9's by term n+4; to five adjacent 9's by term n+6; to seven adjacent 9's by term n+8; ... to 2^k+3 adjacent 9's (see A062709) by term n+4+2k, regardless of what happens in the rest of the number.
In the present sequence a(41) contains two non-final substrings of three adjacent 9's. QED (End)
[Argument corrected and completed by David J. Seal, Nov 05 2019.]

Crossrefs

Cf. A053392.

Programs

  • Mathematica
    NestList[FromDigits[Flatten[{IntegerDigits[Total[Partition[IntegerDigits[#], 2, 1], {2}]]}]] &, 1496, 20] (* Paolo Xausa, Jan 10 2025 *)

A134250 Expansion of x*(4+9*x-7*x^2) / ((1-x)*(1+3*x-x^2)).

Original entry on oeis.org

4, 1, 7, -14, 55, -173, 580, -1907, 6307, -20822, 68779, -227153, 750244, -2477879, 8183887, -27029534, 89272495, -294847013, 973813540, -3216287627, 10622676427, -35084316902, 115875627139, -382711198313, 1264009222084, -4174738864559, 13788225815767
Offset: 1

Views

Author

Roger L. Bagula, Jan 14 2008

Keywords

Crossrefs

Programs

  • Maple
    A134250 := proc(n)
            2-17*(-1)^n*A006190(n)+5*(-1)^n*A006190(n+1) ;
    end proc:
    seq(A134250(n),n=1..10) ; # R. J. Mathar, Dec 06 2011
  • Mathematica
    LinearRecurrence[{-2,4,-1},{4,1,7},30] (* Harvey P. Dale, Aug 15 2015 *)
    Rest@ CoefficientList[Series[x (4 + 9 x - 7 x^2)/((1 - x) (1 + 3 x - x^2)), {x, 0, 27}], x] (* Michael De Vlieger, May 16 2017 *)
  • PARI
    Vec(x*(4+9*x-7*x^2)/((1-x)*(1+3*x-x^2)) + O(x^30)) \\ Colin Barker, May 16 2017

Formula

a(n) = 2-17*(-1)^n*A006190(n) +5*(-1)^n*A006190(n+1). - R. J. Mathar, Dec 06 2011
From Colin Barker, May 16 2017: (Start)
a(n) = 2 + (2^(-1-n)*((-3-sqrt(13))^n*(-19+5*sqrt(13)) + (-3+sqrt(13))^n*(19+5*sqrt(13)))) / sqrt(13).
a(n) = -2*a(n-1) + 4*a(n-2) - a(n-3) for n>3.
(End)

A245179 Numbers of the form 2^k+3 or 3*2^k+1, k >= 2.

Original entry on oeis.org

7, 11, 13, 19, 25, 35, 49, 67, 97, 131, 193, 259, 385, 515, 769, 1027, 1537, 2051, 3073, 4099, 6145, 8195, 12289, 16387, 24577, 32771, 49153, 65539, 98305, 131075, 196609, 262147, 393217, 524291, 786433, 1048579, 1572865, 2097155, 3145729, 4194307, 6291457
Offset: 1

Views

Author

N. J. A. Sloane, Jul 17 2014

Keywords

Comments

Numbers whose binary expansion is 10..011 or 110..01.

Crossrefs

Essentially the union of A062709 and A181565. Cf. A245178.

Programs

  • Magma
    &cat [[3*2^i+1,2^(i+2)+3]: i in [1..30]]; // Bruno Berselli, Jul 23 2014
  • Mathematica
    CoefficientList[Series[- (14 x^3 + 8 x^2 - 11 x - 7)/((x - 1) (x + 1) (2 x^2 - 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Jul 23 2014 *)
    LinearRecurrence[{0,3,0,-2},{7,11,13,19},50] (* Harvey P. Dale, Mar 05 2015 *)

Formula

a(2k) = 2^(k+2)+3, a(2k+1) = 3*2^(k+1)+1. - N. J. A. Sloane, Jul 19 2014
a(n) = 3*a(n-2)-2*a(n-4). G.f.: -x*(14*x^3+8*x^2-11*x-7) / ((x-1)*(x+1)*(2*x^2-1)). - Colin Barker, Jul 19 2014

A254463 a(n) = 15*2^n + 6*4^n + 10*3^n + 3*5^n + 6^n + 21.

Original entry on oeis.org

56, 126, 378, 1386, 5778, 26226, 126378, 636426, 3314178, 17714466, 96660378, 536249466, 3015243378, 17141522706, 98333399178, 568324150506, 3305074833378, 19319850386946, 113420243462778, 668241096915546, 3948892688324178, 23393955029043186, 138880128205091178
Offset: 0

Views

Author

Luciano Ancora, Jan 31 2015

Keywords

Comments

This is the sequence of sixth terms of "third partial sums of m-th powers".

Crossrefs

Programs

  • Mathematica
    Table[15 2^n + 6 4^n + 10 3^n + 3 5^n + 6^n + 21, {n, 0, 25}] (* Michael De Vlieger, Jan 31 2015 *)
  • PARI
    vector(30, n, n--; 15*2^n + 6*4^n + 10*3^n + 3*5^n + 6^n + 21) \\ Colin Barker, Jan 31 2015

Formula

From Colin Barker, Jan 31 2015: (Start)
G.f.: -2*(12276*x^5 - 20578*x^4 + 12831*x^3 - 3766*x^2 + 525*x - 28)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)).
a(n) = 21*a(n-1) - 175*a(n-2) + 735*a(n-3) - 1624*a(n-4) + 1764*a(n-5) - 720*a(n-6). (End)
E.g.f.: exp(x)*(exp(5*x) + 3*exp(4*x) + 6*exp(3*x) + 10*exp(2*x) + 15*exp(x) + 21). - Elmo R. Oliveira, Sep 16 2024
Previous Showing 11-20 of 29 results. Next