cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A338694 a(n) = Sum_{d|n} d^d * binomial(d, n/d).

Original entry on oeis.org

1, 8, 81, 1028, 15625, 280017, 5764801, 134219264, 3486784428, 100000031250, 3138428376721, 106993206079936, 3937376385699289, 155568095575106627, 6568408355712921875, 295147905179822588160, 14063084452067724991009, 708235345355351624428356, 37589973457545958193355601
Offset: 1

Views

Author

Seiichi Manyama, Apr 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^# * Binomial[#, n/#] &]; Array[a, 20] (* Amiram Eldar, Apr 24 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^d*binomial(d, n/d));
    
  • PARI
    N=20; x='x+O('x^N); Vec(sum(k=1, N, (k+k*x^k)^k-k^k))

Formula

G.f.: Sum_{k>=1} ( (k + k * x^k)^k - k^k ) = Sum_{k>=1} k^k * ( (1 + x^k)^k - 1 ).
If p is prime, a(p) = p^(p+1).

A217576 a(n) = Sum_{d divides n} (d!)^(n/d).

Original entry on oeis.org

1, 3, 7, 29, 121, 765, 5041, 40913, 363097, 3643233, 39916801, 479535185, 6227020801, 87203692929, 1307676103777, 20924415922433, 355687428096001, 6402505760917569, 121645100408832001, 2432915176581403649, 51090942299733783937, 1124002321128529922049
Offset: 1

Views

Author

Joerg Arndt, Oct 07 2012

Keywords

Crossrefs

Cf. A062363 ( Sum_{d divides n} d! ).
Cf. A062796 ( Sum_{d divides n} d^d ), A066108 ( Sum_{d divides n} n^d ).

Programs

  • Mathematica
    f[n_]=With[{d=Divisors[n]},Total[(d!)^(n/d)]]; Array[f,25] (* Harvey P. Dale, Dec 20 2023 *)
  • PARI
    a(n)=sumdiv(n,d, (d!)^(n/d) );

Formula

G.f.: Sum_{n>=1} n!*x^n / (1 - n!*x^n). - Paul D. Hanna, Jan 17 2013

A308670 a(n) = Sum_{d|n} d^(d*n).

Original entry on oeis.org

1, 17, 19684, 4294967553, 298023223876953126, 10314424798490535546559373642, 256923577521058878088611477224235621321608, 6277101735386680763835789423207666416120802188537744130049
Offset: 1

Views

Author

Seiichi Manyama, Jun 16 2019

Keywords

Crossrefs

Column k=2 of A308676.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(#*n) &]; Array[a, 8] (* Amiram Eldar, May 11 2021 *)
  • PARI
    {a(n) = sumdiv(n, d, d^(d*n))}
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k^k*x)^k)^(1/k)))))

Formula

L.g.f.: -log(Product_{k>=1} (1 - (k^k*x)^k)^(1/k)) = Sum_{k>=1} a(k)*x^k/k.

A308674 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(d^k).

Original entry on oeis.org

1, 1, 3, 1, 5, 4, 1, 17, 28, 7, 1, 257, 19684, 261, 6, 1, 65537, 7625597484988, 4294967313, 3126, 12, 1, 4294967297, 443426488243037769948249630619149892804, 340282366920938463463374607431768211713, 298023223876953126, 46688, 8
Offset: 1

Views

Author

Seiichi Manyama, Jun 16 2019

Keywords

Examples

			Square array begins:
   1,   1,          1,                                       1, ...
   3,   5,         17,                                     257, ...
   4,  28,      19684,                           7625597484988, ...
   7, 261, 4294967313, 340282366920938463463374607431768211713, ...
		

Crossrefs

Columns k=0..3 give A000203, A062796, A308671, A308672.
Cf. A308676.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, #^(#^k) &]; Table[T[k, n - k], {n, 1, 7}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)

Formula

L.g.f. of column k: -log(Product_{j>=1} (1 - x^j)^(j^(j^k-1))).

A321385 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^d.

Original entry on oeis.org

1, 3, 28, 251, 3126, 46632, 823544, 16776955, 387420517, 9999996878, 285311670612, 8916100401824, 302875106592254, 11112006824734476, 437893890380862528, 18446744073692774139, 827240261886336764178, 39346408075296150201567, 1978419655660313589123980, 104857599999999989999997126
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 08 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n/d + 1) d^d, {d, Divisors[n]}], {n, 20}]
    nmax = 20; Rest[CoefficientList[Series[Sum[k^k x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d+1)*d^d); \\ Michel Marcus, Nov 09 2018

Formula

G.f.: Sum_{k>=1} k^k*x^k/(1 + x^k).
a(n) ~ n^n. - Vaclav Kotesovec, Nov 09 2018

A345098 a(n) = Sum_{k=1..n} floor(n/k)^floor(n/k).

Original entry on oeis.org

1, 5, 29, 262, 3132, 46690, 823578, 16777484, 387420781, 10000003165, 285311673777, 8916100495209, 302875106639207, 11112006826381861, 437893890381686113, 18446744073726332260, 827240261886353544822, 39346408075296925042900
Offset: 1

Views

Author

Seiichi Manyama, Jun 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Floor[n/k]^Floor[n/k], {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Jun 08 2021 *)
  • PARI
    a(n) = sum(k=1, n, (n\k)^(n\k));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(j=1, N, (1-x^j)*sum(k=1, N, (k*x^j)^k))/(1-x))

Formula

G.f.: (1/(1 - x)) * Sum_{j>=1} Sum_{k>=1} (k*x^j)^k * (1 - x^j).
a(n) ~ n^n. - Vaclav Kotesovec, Jun 11 2021

A345465 a(n) = Sum_{d|n} (d!)^d.

Original entry on oeis.org

1, 5, 217, 331781, 24883200001, 139314069504000221, 82606411253903523840000001, 6984964247141514123629140377600331781, 109110688415571316480344899355894085582848000000217, 395940866122425193243875570782668457763038822400000000024883200005
Offset: 1

Views

Author

Seiichi Manyama, Jul 10 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Total/@Table[((Divisors[n])!)^Divisors[n],{n,10}] (* Harvey P. Dale, Apr 24 2022 *)
  • PARI
    a(n) = sumdiv(n, d, d!^d);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k!*x)^k/(1-x^k)))

Formula

G.f.: Sum_{k >= 1} (k! * x)^k/(1 - x^k).
If p is prime, a(p) = 1 + (p!)^p.

A308671 a(n) = Sum_{d|n} d^(d^2).

Original entry on oeis.org

1, 17, 19684, 4294967313, 298023223876953126, 10314424798490535546171968756, 256923577521058878088611477224235621321608, 6277101735386680763835789423207666416102355444468329480209
Offset: 1

Views

Author

Seiichi Manyama, Jun 16 2019

Keywords

Crossrefs

Column k=2 of A308674.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(#^2) &]; Array[a, 8] (* Amiram Eldar, May 11 2021 *)
  • PARI
    {a(n) = sumdiv(n, d, d^d^2)}
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^(k^(k^2-1))))))

Formula

L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(k^2-1))) = Sum_{k>=1} a(k)*x^k/k.

A308755 a(n) = Sum_{d|n} d^(d-2).

Original entry on oeis.org

1, 2, 4, 18, 126, 1301, 16808, 262162, 4782973, 100000127, 2357947692, 61917365541, 1792160394038, 56693912392105, 1946195068359504, 72057594038190098, 2862423051509815794, 121439531096599036046, 5480386857784802185940, 262144000000000100000143
Offset: 1

Views

Author

Seiichi Manyama, Jun 22 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(# - 2) &]; Array[a, 20] (* Amiram Eldar, May 08 2021 *)
  • PARI
    {a(n) = sumdiv(n, d, d^(d-2))}
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(k-3)))))
    
  • PARI
    N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(k-2)*x^k/(1-x^k)))

Formula

L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(k-3))) = Sum_{k>=1} a(k)*x^k/k.
G.f.: Sum_{k>=1} k^(k-2) * x^k/(1 - x^k).

A343983 Numbers k such that Sum_{j|k} j^j == 1 (mod k).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 72, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257
Offset: 1

Views

Author

Seiichi Manyama, May 06 2021

Keywords

Comments

This sequence is different from A074583.

Crossrefs

Programs

  • Mathematica
    q[n_] := Divisible[DivisorSum[n, #^# &] - 1, n]; Select[Range[260], q] (* Amiram Eldar, May 06 2021 *)
  • PARI
    isok(n) = sumdiv(n, d, Mod(d, n)^d)==1;
    
  • Python
    from itertools import count, islice
    from sympy import divisors
    def A343983_gen(): # generator of terms
        yield 1
        for k in count(1):
            if sum(pow(j,j,k) for j in divisors(k,generator=True)) % k == 1:
                yield k
    A343983_list = list(islice(A343983_gen(),30)) # Chai Wah Wu, Jun 19 2022
Previous Showing 11-20 of 31 results. Next