cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A355887 a(n) = Sum_{k=1..n} k^k * floor(n/k).

Original entry on oeis.org

1, 6, 34, 295, 3421, 50109, 873653, 17651130, 405071647, 10405074777, 295716745389, 9211817240589, 312086923832843, 11424093750214407, 449317984131076935, 18896062057857406028, 846136323944194170206, 40192544399241119212807
Offset: 1

Views

Author

Seiichi Manyama, Jul 20 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, n\k*k^k);
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, d^d));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x)^k/(1-x^k))/(1-x))
    
  • Python
    def A355887(n): return n*(1+n**(n-1))+sum(k**k*(n//k) for k in range(2,n)) if n>1 else 1 # Chai Wah Wu, Jul 21 2022

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} d^d.
G.f.: (1/(1-x)) * Sum_{k>0} (k * x)^k/(1 - x^k).

A359731 a(n) = (1/2) * Sum_{d|n} (2*d)^d.

Original entry on oeis.org

1, 9, 109, 2057, 50001, 1493109, 52706753, 2147485705, 99179645293, 5120000050009, 292159150705665, 18260173719523445, 1240576436601868289, 91029559915023973833, 7174453500000000050109, 604462909807316734838793, 54214017802982966177103873
Offset: 1

Views

Author

Seiichi Manyama, Jan 12 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (2*#)^# &] / 2; Array[a, 20] (* Amiram Eldar, Aug 14 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (2*d)^d)/2;
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, 2^(k-1)*(k*x)^k/(1-x^k)))

Formula

G.f.: Sum_{k>0} 2^(k-1) * (k * x)^k / (1 - x^k).

A076723 Sum_{d divides n} (-d)^d.

Original entry on oeis.org

-1, 3, -28, 259, -3126, 46632, -823544, 16777475, -387420517, 9999996878, -285311670612, 8916100495144, -302875106592254, 11112006824734476, -437893890380862528, 18446744073726329091, -827240261886336764178, 39346408075296150201567
Offset: 1

Views

Author

Vladeta Jovovic, Oct 27 2002

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, (-d)^d); \\ Michel Marcus, Dec 22 2018

Formula

G.f.: Sum_{n>0} (-n*x)^n/(1-x^n).

A343567 a(n) = Sum_{d|n} (n/d)^(n/d) * binomial(d+n-2,n-1).

Original entry on oeis.org

1, 6, 33, 292, 3195, 47154, 824467, 16783176, 387434574, 10000082730, 285311855367, 8916101760828, 302875109296409, 11112006847596746, 437893890421433595, 18446744074133995664, 827240261886937844567, 39346408075305857765940
Offset: 1

Views

Author

Seiichi Manyama, Apr 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (n/#)^(n/#) * Binomial[# + n - 2, n - 1] &]; Array[a, 20] (* Amiram Eldar, Apr 25 2021 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d)^(n/d)*binomial(d+n-2, n-1));

Formula

a(n) = [x^n] Sum_{k>=1} (k * x)^k/(1 - x^k)^n.

A376014 a(n) = Sum_{d|n} d^d * binomial(n/d,d).

Original entry on oeis.org

1, 2, 3, 8, 5, 18, 7, 32, 36, 50, 11, 180, 13, 98, 285, 384, 17, 702, 19, 1480, 966, 242, 23, 5640, 3150, 338, 2295, 9352, 29, 22440, 31, 18432, 4488, 578, 65660, 85500, 37, 722, 7761, 229560, 41, 337302, 43, 85448, 406080, 1058, 47, 1449360, 823592, 788750, 18411
Offset: 1

Views

Author

Seiichi Manyama, Sep 06 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, d^d*binomial(n/d, d));
    
  • PARI
    my(N=60, x='x+O('x^N)); Vec(sum(k=1, N, (k*x^k)^k/(1-x^k)^(k+1)))
    
  • Python
    from math import comb
    from itertools import takewhile
    from sympy import divisors
    def A376014(n): return sum(d**d*comb(n//d,d) for d in takewhile(lambda d:d**2<=n,divisors(n))) # Chai Wah Wu, Sep 06 2024

Formula

G.f.: Sum_{k>=1} (k*x^k)^k / (1 - x^k)^(k+1).
If p is prime, a(p) = p.

A308672 a(n) = Sum_{d|n} d^(d^3).

Original entry on oeis.org

1, 257, 7625597484988, 340282366920938463463374607431768211713, 2350988701644575015937473074444491355637331113544175043017503412556834518909454345703126
Offset: 1

Views

Author

Seiichi Manyama, Jun 16 2019

Keywords

Comments

The next term (a(6)) has 169 digits. - Harvey P. Dale, Sep 08 2020

Crossrefs

Column k=3 of A308674.

Programs

  • Mathematica
    Table[Total[Divisors[n]^Divisors[n]^3],{n,5}] (* Harvey P. Dale, Sep 08 2020 *)
    a[n_] := DivisorSum[n, #^(#^3) &]; Array[a, 5] (* Amiram Eldar, May 11 2021 *)
  • PARI
    {a(n) = sumdiv(n, d, d^d^3)}
    
  • PARI
    N=10; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^(k^(k^3-1))))))

Formula

L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(k^3-1))) = Sum_{k>=1} a(k)*x^k/k.

A336892 Numbers that are a divisor of the sum of their divisors to their own powers.

Original entry on oeis.org

1, 10, 12, 96, 304, 639, 2052, 2060, 2097, 2940, 5586, 9087, 10550, 38988, 42622, 84380, 128030, 199694, 255240, 342411, 346044, 515316, 673233, 721035, 1053700, 1361943, 2149875, 4206049, 5739687, 6979316, 10896431, 15904273, 138156772, 144608991, 276866005
Offset: 1

Views

Author

Scott R. Shannon, Aug 07 2020

Keywords

Comments

As n is a divisor of n^n this sequence is also the numbers that are a divisor of the sum of their proper divisors to their own powers.
Integers k such that k divides A062796(k). - Michel Marcus, Aug 07 2020
a(36) > 280 million if it exists. - David A. Corneth, Aug 10 2020

Examples

			10 is a term as the divisors of 10 are 1,2,5,10 and 1^1+2^2+5^5+10^10 = 3130 + 10^10 which is divisible by 10.
12 is a term as the divisors of 12 are 1,2,3,4,6,12 and 1^1+2^2+3^3+4^4+6^6+12^12 = 46944 + 12^12 which is divisible by 12.
		

Crossrefs

Programs

  • Mathematica
    seqQ[n_] := Divisible[DivisorSum[n, PowerMod[#, #, n] &], n]; Select[Range[10^5], seqQ] (* Amiram Eldar, Aug 10 2020 *)
  • PARI
    isokb(k) = ! sumdiv(k, d, if (dMichel Marcus, Aug 10 2020

Extensions

a(19)-a(25) from Amiram Eldar, Aug 08 2020
a(26)-a(32) from Michel Marcus, Aug 10 2020
a(33)-a(35) from David A. Corneth, Aug 10 2020

A347399 a(n) = A347398(n^n).

Original entry on oeis.org

1, 5, 28, 261, 3126, 46688, 823544, 16777477, 387420517, 10000003386, 285311670612, 8916117272416, 302875106592254, 11112006826381820, 437893890380862528, 18446744073726329093, 827240261886336764178, 39346408075296925042857
Offset: 1

Views

Author

Seiichi Manyama, Aug 30 2021

Keywords

Comments

This sequence is different from A062796.

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, (n^n%k^k==0)*k^k);

Formula

a(n) = A347397(n^n) - A347397(n^n-1) for n > 1.
a(n) = Sum_{k=1..n, k^k | n^n} k^k.
If p is prime, a(p) = 1 + p^p.

A351165 a(n) = n! * Sum_{d|n} d^(d - n/d).

Original entry on oeis.org

1, 6, 60, 1584, 75120, 5601960, 592956000, 84557864160, 15620794842240, 3628800457682400, 1035338990353113600, 355902198996315787200, 145077660657865961625600, 69194697633957032681544000, 38174841090323471644830720000, 24122334398251368151021076928000
Offset: 1

Views

Author

Seiichi Manyama, Aug 21 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * DivisorSum[n, #^(# - n/#) &]; Array[a, 16] (* Amiram Eldar, Aug 21 2022 *)
  • PARI
    a(n) = n!*sumdiv(n, d, d^(d-n/d));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (k*x)^k/(k-x^k))))

Formula

E.g.f.: Sum_{k>=1} (k * x)^k/(k - x^k).

A363590 a(n) = Sum_{d|n, d odd} d^d.

Original entry on oeis.org

1, 1, 28, 1, 3126, 28, 823544, 1, 387420517, 3126, 285311670612, 28, 302875106592254, 823544, 437893890380862528, 1, 827240261886336764178, 387420517, 1978419655660313589123980, 3126, 5842587018385982521381947992, 285311670612
Offset: 1

Views

Author

Seiichi Manyama, Jul 08 2023

Keywords

Comments

Not multiplicative: a(3)*a(5) != a(15), for example.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^# &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Jul 26 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%2==1)*d^d);
    
  • Python
    from sympy import divisors
    def A363590(n): return sum(d**d for d in divisors(n>>(~n & n-1).bit_length(),generator=True)) # Chai Wah Wu, Jul 09 2023

Formula

G.f.: Sum_{k>0} ((2*k-1) * x)^(2*k-1) / (1 - x^(2*k-1)).
a(2^n) = 1.
Previous Showing 21-30 of 31 results. Next