cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A133298 a(n) = 1 + Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} i^(j+k).

Original entry on oeis.org

2, 41, 1727, 130917, 17245160, 3546873073, 1046002784253, 417182980579609, 215861313302976046, 140463714074395109081, 112191246261394235358555, 107867952671976721983260413, 122856922623618324408724634164
Offset: 1

Views

Author

Alexander Adamchuk, Oct 17 2007

Keywords

Comments

p divides a(p) for prime p>3. p^2 divides a(p) for prime p=7. Nonprime n dividing a(n) are {1,15}.

Crossrefs

Programs

  • GAP
    List([1..20], n-> 1 + n^2 + Sum([2..n], j-> (j*(j^n-1)/(j-1))^2) ); # G. C. Greubel, Aug 02 2019
  • Magma
    [2] cat [1+n^2 + (&+[(j*(j^n-1)/(j-1))^2: j in [2..n]]): n in [1..20]]; // G. C. Greubel, Aug 02 2019
    
  • Mathematica
    Table[Sum[(i(i^n-1)/(i-1))^2, {i,2,n}] +n^2 +1,{n,20}]
  • PARI
    vector(20, n, 1+n^2 + sum(j=2,n, (j*(j^n-1)/(j-1))^2)) \\ G. C. Greubel, Aug 02 2019
    
  • Sage
    [1+n^2 + sum((j*(j^n-1)/(j-1))^2 for j in (2..n)) for n in (1..20)] # G. C. Greubel, Aug 02 2019
    

Formula

a(n) = 1 + Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} i^(j+k).
a(n) = 1 + n^2 + Sum_{j=2..n} (j*(j^n - 1)/(j-1))^2.

A349226 Triangle read by rows. Row n gives the coefficients of Product_{k=0..n} (x - k^k) expanded in decreasing powers of x, with row 0 = {1}.

Original entry on oeis.org

1, 1, -1, 1, -2, 1, 1, -6, 9, -4, 1, -33, 171, -247, 108, 1, -289, 8619, -44023, 63340, -27648, 1, -3413, 911744, -26978398, 137635215, -197965148, 86400000, 1, -50070, 160195328, -42565306462, 1258841772303, -6421706556188, 9236348345088, -4031078400000
Offset: 0

Views

Author

Thomas Scheuerle, Jul 07 2022

Keywords

Comments

Let M be an n X n matrix filled by binomial(i*j, i) with rows and columns j = 1..n, k = 1..n; then its determinant equals unsigned T(n, n). Can we find a general formula for T(n+m, n) based on determinants of matrices and binomials?

Examples

			The triangle begins:
  1;
  1,    -1;
  1,    -2,      1;
  1,    -6,      9,        -4;
  1,   -33,    171,      -247,       108;
  1,  -289,   8619,    -44023,     63340,     -27648;
  1, -3413, 911744, -26978398, 137635215, -197965148, 86400000;
  ...
Row 4: x^4-33*x^3+171*x^2-247*x+108 = (x-1)*(x-1^1)*(x-2^2)*(x-3^3).
		

Crossrefs

Cf. A008276 (The Stirling numbers of the first kind in reverse order).
Cf. A039758 (Coefficients for polynomials with roots in odd numbers).
Cf. A355540 (Coefficients for polynomials with roots in factorials).

Programs

  • PARI
    T(n, k) = polcoeff(prod(m=0, n-1, (x-m^m)), n-k);

Formula

T(n, 0) = 1.
T(n, 1) = -A062970(n).
T(n, 2) = Sum_{m=0..n-1} A062970(m)*m^m.
T(n, k) = Sum_{m=0..n-1} -T(m, k-1)*m^m.
T(n, n) = (-1)^n*A002109(n).

A353018 a(n) = Sum_{k=0..floor(n/3)} (n-3*k)^(n-3*k).

Original entry on oeis.org

1, 1, 4, 28, 257, 3129, 46684, 823800, 16780345, 387467173, 10000823800, 285328450956, 8916487915429, 302885107416053, 11112292154008972, 437902806868774804, 18447046958816967669, 827251374178490773149, 39346845978103406350228
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[3*k == n, 1, (n - 3*k)^(n - 3*k)], {k, 0, Floor[n/3]}]; Array[a, 20, 0] (* Amiram Eldar, Apr 16 2022 *)
  • PARI
    a(n) = sum(k=0, n\3, (n-3*k)^(n-3*k));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k)/(1-x^3))

Formula

G.f.: ( Sum_{k>=0} (k * x)^k )/(1 - x^3).

A068983 a(n) = Sum_{k=0..n} (k^k-k!).

Original entry on oeis.org

0, 2, 23, 255, 3260, 49196, 867699, 17604595, 404662204, 10401033404, 295672787215, 9211294233871, 312080173805324, 11423999821072140, 449316582527563515, 18896039733447227131, 846135945932355895308, 40192537618855187742732, 2018612071634068368034711
Offset: 1

Views

Author

Darrell Minor, Apr 02 2002

Keywords

Comments

a(n) = number of non-injective functions [k]->[k] for 1<=k<=n.

Examples

			a(4) = 255 because (1^1-1!)+(2^2-2!)+(3^3-3!)+(4^4-4!) = 255.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[n^n-n!,{n,20}]] (* Harvey P. Dale, Aug 21 2011 *)

Formula

a(n) = Sum_{k=0..n} (k^k-k!).
a(n) = A062970(n) - A003422(n+1). - Alois P. Heinz, Aug 10 2021

A349928 a(n) = Sum_{k=0..n} (k+n)^k.

Original entry on oeis.org

1, 3, 20, 246, 4481, 107129, 3157836, 110504876, 4473749677, 205615442135, 10574135574388, 601527803412298, 37500537926181449, 2542321872054610333, 186209553386691383388, 14653121207168215024624, 1232879877057607865696085, 110444572988776439826640683
Offset: 0

Views

Author

Seiichi Manyama, Dec 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(k + n)^k, {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Dec 05 2021 *)
  • PARI
    a(n) = sum(k=0, n, (k+n)^k);

Formula

a(n) ~ 2^n * n^n. - Vaclav Kotesovec, Dec 06 2021
Previous Showing 11-15 of 15 results.