cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A100703 (T(n-1) + T(n-2)) + T(n-1)*T(n-2) where T(0)=3, T(1)=5 and n >= 2.

Original entry on oeis.org

3, 5, 23, 143, 3455, 497663, 1719926783, 855945643032575, 1472163837099830446915583, 1260092222195718836233500990239234064383, 1855062200927301576619335433612526767115692635401046316868960255
Offset: 0

Views

Author

Parthasarathy Nambi, Dec 09 2004

Keywords

Examples

			(3 + 5) + 3*5 = 23
		

Crossrefs

Similar to A063896 but with initial terms 3 and 5.

Programs

  • Mathematica
    RecurrenceTable[{a[0]==3,a[1]==5,a[n]==a[n-1]+a[n-2]+a[n-1]a[n-2]},a,{n,10}] (* Harvey P. Dale, Sep 15 2014 *)

Formula

a(n) = (a(n-1) + a(n-2)) + a(n-1)*a(n-2) with a(0)=3 and a(1)=5

Extensions

More terms from Harvey P. Dale, Sep 15 2014

A100704 a(n) = (a(n-1) + a(n-2)) * a(n-1) * a(n-2) with a(0)=1 and a(1)=1.

Original entry on oeis.org

1, 1, 2, 6, 96, 58752, 331914018816, 6472527787868799987640958976, 13905078437588927055776809046479521344793888146925785597768443625472
Offset: 0

Views

Author

Parthasarathy Nambi, Dec 09 2004

Keywords

Comments

The next term is too large to include.
Essentially the same as A066091. - R. J. Mathar, Sep 02 2008

Examples

			(1 + 1) * 1*1 = 2.
(1 + 2) * 1*2 = 6.
		

Crossrefs

Cf. A063896.

Programs

  • Maple
    a[0]:=1: a[1]:=1: for n from 2 to 9 do a[n]:= (a[n-1]+a[n-2])*a[n-1]*a[n-2] od: seq(a[n],n=0..9); # Emeric Deutsch, Dec 23 2004

Extensions

More terms from Emeric Deutsch, Dec 23 2004

A117077 Define binary strings S(0)=0, S(1)=1, S(n) = S(n-2)S(n-1); a(n) = S(n) converted to decimal.

Original entry on oeis.org

0, 1, 1, 5, 13, 173, 3501, 1420717, 7343549869, 24407739551034797, 264579267653248177273154989, 15107659029337673520218077770654501397966253, 5900314832748922900613950065282124787723453785544193308390237364661677
Offset: 0

Views

Author

Jordan Goldstein (jboymicro20X6(AT)aim.com), Apr 18 2006

Keywords

Comments

Note that S(n) in general has leading zeros.

Examples

			S(3) = 01 (base 2) = 1 (base 10) so a(3) = 1.
S(4) = 101 (base 2) = 5 (base 10) so a(4) = 5.
S(5) = 01.101 = 01101 (base 2) = 13 (base 10) so a(5) = 13.
S(6) = 101.01101 = 10101101 (base 2) = 173 (base 10) so a(6) = 173.
S(7) = 01101.10101101 = 0110110101101 (base 2) = 3501 (base 10).
		

Crossrefs

Cf. A063896.

Programs

  • Mathematica
    a[1] = 0; a[2] = 1; a[n_] := a[n] = If[ OddQ@n, FromDigits[ Join[ IntegerDigits[ a[n - 2], 2], IntegerDigits[ a[n - 1], 2]], 2], FromDigits[ Join[ IntegerDigits[ a[n - 2], 2], {0}, IntegerDigits[ a[n - 1], 2]], 2]]; Array[a, 13] (* Robert G. Wilson v, Apr 20 2006 *)

Formula

S(0) = 0, S(1) = 1, so S(2) = 01, a(2) = 1.
Use the substitution system 0->1 and 1->01. The values generated from a(0)=0 are 1, 01, 101, 01101, which in base 10 give the sequence. - Jon Perry, Feb 06 2011

Extensions

More terms from Robert G. Wilson v, Apr 20 2006
Edited by N. J. A. Sloane, Apr 23 2006

A228763 a(n) = 2^L(n) - 1, where L(n) is the n-th Lucas number (A000032).

Original entry on oeis.org

3, 1, 7, 15, 127, 2047, 262143, 536870911, 140737488355327, 75557863725914323419135, 10633823966279326983230456482242756607, 803469022129495137770981046170581301261101496891396417650687
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = a(n-1) + a(n-2) + a(n-1) * a(n-2) for n>1, a(0)=3, a(1)=1.

Extensions

More terms from Bruno Berselli, Sep 03 2013

A228778 a(n) = 2^Fibonacci(n) + 1.

Original entry on oeis.org

2, 3, 3, 5, 9, 33, 257, 8193, 2097153, 17179869185, 36028797018963969, 618970019642690137449562113, 22300745198530623141535718272648361505980417, 13803492693581127574869511724554050904902217944340773110325048447598593
Offset: 0

Views

Author

Yeshwant Shivrai Valaulikar and M. Tamba, Sep 04 2013

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> 1 + 2^(<<0|1>, <1|1>>^n)[1,2]:
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 12 2017
  • Mathematica
    Table[2^Fibonacci[n] + 1, {n, 0, 13}] (* T. D. Noe, Sep 07 2013 *)

Formula

a(n+2) = a(n+1)*a(n) - a(n) - a(n+1) + 2, a(0)=2, a(1)=3.
Binet type formula: log_2(a(n)-1) = (1/sqrt(5)) * (r^n - s^n), where r and s are the roots of x^2-x-1. (this is true by definition).
a(n) = A000301(n) + 1 = A063896(n) + 2. - Alois P. Heinz, Aug 12 2017

A258948 a(1)=1, a(2)=2; for n>2, a(n) = (1/2)*a(n-1)*a(n-2) + a(n-1) + a(n-2).

Original entry on oeis.org

1, 2, 4, 10, 34, 214, 3886, 419902, 816293374, 171382426877950, 69949169911638289022974, 5994029248777394614754727872037912574, 209638685189029793998133268981457005889853767752082771673086
Offset: 1

Views

Author

Morris Neene, Jun 15 2015

Keywords

Comments

a(n) + 2 = (1/2)*(a(n-1) + 2)*(a(n-2) + 2), from which the general formula can be proved using the method shown in A063896.

Examples

			a(3) = (1/2)*2*1 + 2 + 1 = 4;
a(4) = (1/2)*4*2 + 4 + 2 = 10;
a(5) = (1/2)*10*4 + 10 + 4 = 34;
a(6) = 2*(3^3)(2^2) - 2 = 214.
		

Crossrefs

Programs

  • Magma
    [n le 2 select n else Self(n-1)*Self(n-2)/2+Self(n-1)+Self(n-2): n in [1..13]];
    
  • Magma
    [2*3^Fibonacci(n-2)*2^Fibonacci(n-3)-2: n in [1..20]]; // Vincenzo Librandi, Jun 17 2015
  • Mathematica
    Table[2 3^Fibonacci[n-2] 2^Fibonacci[n-3] - 2, {n, 1, 20}] (* Vincenzo Librandi, Jun 17 2015 *)
  • PARI
    a(n) = 2*(3^fibonacci(n-2))*(2^fibonacci(n-3)) - 2; \\ Michel Marcus, Jun 17 2015
    

Formula

a(n) = 2 * 3^A000045(n-2) * 2^A000045(n-3) - 2, where A000045(n) is the n-th Fibonacci number.

A342689 Square array read by antidiagonals (upwards): A(n,k) = (k^Fibonacci(n) - 1) / (k - 1) for k >= 0 and n >= 0 with lim_{k -> 1} A(n,k) = A(n,1) = Fibonacci(n).

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 3, 3, 1, 1, 0, 1, 5, 7, 4, 1, 1, 0, 1, 8, 31, 13, 5, 1, 1, 0, 1, 13, 255, 121, 21, 6, 1, 1, 0, 1, 21, 8191, 3280, 341, 31, 7, 1, 1, 0, 1, 34, 2097151, 797161, 21845, 781, 43, 8, 1, 1, 0, 1, 55, 17179869184, 5230176601, 22369621, 97656, 1555, 57, 9, 1, 1, 0
Offset: 0

Views

Author

Werner Schulte, May 18 2021

Keywords

Comments

Replacing Fibonacci(n), A000045, with Lucas(n), A000032, you get another square array B(n,k). The terms satisfy the same recurrence equation B(n,k) = (k - 1) * B(n-1,k) * B(n-2,k) + B(n-1,k) + B(n-2,k) for k >= 0 and n > 1 with initial values B(0,k) = k+1 and B(1,k) = 1. Please take account of lim_{k -> 1} (k^Lucas(n) - 1) / (k - 1) = Lucas(n).

Examples

			The array A(n,k) for k >= 0 and n >= 0 begins:
n \ k: 0  1           2          3        4     5    6    7  8  9  10  11
=========================================================================
   0 : 0  0           0          0        0     0    0    0  0  0   0   0
   1 : 1  1           1          1        1     1    1    1  1  1   1   1
   2 : 1  1           1          1        1     1    1    1  1  1   1   1
   3 : 1  2           3          4        5     6    7    8  9 10  11  12
   4 : 1  3           7         13       21    31   43   57 73 91 111 133
   5 : 1  5          31        121      341   781 1555 2801
   6 : 1  8         255       3280    21845 97656
   7 : 1 13        8191     797161 22369621
   8 : 1 21     2097151 5230176601
   9 : 1 34 17179869184
  10 : 1 55
  11 : 1 89
  etc.
		

Crossrefs

Cf. A011655 (column k = -1), A057427 (column 0), A000045 (column 1), A063896 (column 2), A000004 (row 0), A000012 (rows 1, 2), A000027 (row 3), A002061 (row 4), A053699 (row 5), A053717 (row 6), A060887 (row 7).

Formula

A(n,k) = (k - 1) * A(n-1,k) * A(n-2,k) + A(n-1,k) + A(n-2,k) for k >= 0 and n > 1 with initial values A(0,k) = 0 and A(1,k) = 1.

A367430 a(1)=a(2)=a(3)=1; for n > 3, a(n) = a(n-1)*a(n-2)*a(n-3) + a(n-1) + a(n-2) + a(n-3).

Original entry on oeis.org

1, 1, 1, 4, 10, 55, 2269, 1250284, 156030444388, 442641893445738546589, 86351628807475712878787449679327520349, 5963928033713995675288097975918984841058670353057557384156171322944994
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A063896 (a(n) = a(n-1)*a(n-2) + a(n-1) + a(n-2)), A000073.

Programs

  • Mathematica
    a[1] = 1; a[2] = 1; a[3] = 1;
    a[n_] := a[n] = a[n - 1]*a[n - 2]*a[n - 3] + a[n - 1] + a[n - 2] + a[n - 3];
    Table[a[n], {n, 1, 12}]
Previous Showing 11-18 of 18 results.