cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 133 results. Next

A110928 Pairs of distinct numbers m and n, m

Original entry on oeis.org

6, 7, 24, 26, 30, 35, 40, 47, 66, 77, 78, 91, 102, 119, 114, 133, 120, 130, 120, 141, 130, 141, 136, 157, 138, 161, 150, 175, 168, 182, 174, 203, 186, 215, 186, 217, 215, 217, 222, 259, 230, 249, 246, 287, 258, 301, 264, 286, 280, 282, 280, 329, 282, 329, 318
Offset: 1

Views

Author

Walter Kehowski, Sep 23 2005

Keywords

Comments

There do not appear to be any pairs (m,n) such that sigma_k(m)=sigma_k(n) for k>2.
For sigma_3, the first pair is (184926, 194315). Other terms may be found in A131907 and A131908. See A158915.

Examples

			sigma_2(30)=1^1+2^2+3^2+5^2+6^2+10^2+15^2+30^2=1300 and sigma_2(35)=1^2+5^2+7^2+35^2=1300.
		

Crossrefs

Programs

  • Maple
    with(numtheory); sigmap := proc(p,n) convert(map(proc(z) z^p end, divisors(n)),`+`) end; SA2:=[]: for z from 1 to 1 do for m to 1500 do M:=sigmap(2,m); for n from m+1 to 1500 do N:=sigmap(2,n); if N=M then SA2:=[op(SA2),[m,n,N]] fi od od od; SA2; select(proc(z) z[1]<=1000 end, SA2); #just to shorten it a bit
  • Mathematica
    a[n_] := Module[{s = DivisorSigma[2, n], ans = {}}, kmax = Ceiling[Sqrt[s]]; Do[If[DivisorSigma[2, k] == s, AppendTo[ans, k]], {k, n + 1, kmax}]; ans];  s = {}; Do[v = a[n]; Do[s = Join[s, {n, v[[k]]}], {k, 1, Length[v]}], {n, 1, 400}]; s (* Amiram Eldar, Sep 08 2019 *)

Formula

sigma_2(m)=sigma_2(n), m

A110929 The common value of sigma_2 for square-amicable numbers, sigma_2(m)=sigma_2(n), m

Original entry on oeis.org

50, 850, 1300, 2210, 6100, 8500, 14500, 18100, 22100, 22100, 22100, 24650, 26500, 32550, 42500, 42100, 48100, 48100, 48100, 68500, 68900, 84100, 92500, 103700, 110500, 110500, 110500, 140500, 158600, 174100, 201110, 186100, 221000, 224500
Offset: 1

Author

Walter Kehowski, Sep 23 2005

Keywords

Examples

			sigma_2(30)=1^1+2^2+3^2+5^2+6^2+10^2+15^2+30^2=1300 and sigma_2(35)=1^2+5^2+7^2+35^2=1300.
		

Crossrefs

Programs

  • Maple
    with(numtheory); sigmap := proc(p,n) convert(map(proc(z) z^p end, divisors(n)),`+`) end; SA2:=[]: for z from 1 to 1 do for m to 1500 do M:=sigmap(2,m); for n from m+1 to 1500 do N:=sigmap(2,n); if N=M then SA2:=[op(SA2),[m,n,N]] fi od od od; SA2; select(proc(z) z[1]<=1000 end, SA2); #just to shorten it a bit
  • Mathematica
    a[n_] := Module[{s = DivisorSigma[2, n], ans = {}}, kmax = Ceiling[Sqrt[s]]; Do[If[DivisorSigma[2, k] == s, AppendTo[ans, s]], {k, n + 1, kmax}]; ans];  s = {}; Do[v = a[n]; Do[AppendTo[s,  v[[k]]], {k, 1, Length[v]}], {n, 1, 400}]; s (* Amiram Eldar, Sep 08 2019 *)

Formula

sigma_2(m)=sigma_2(n), m

A127652 Integers whose unitary aliquot sequences are longer than their ordinary aliquot sequences.

Original entry on oeis.org

25, 28, 36, 40, 50, 68, 70, 74, 94, 95, 98, 116, 119, 134, 142, 143, 154, 162, 170, 175, 182, 189, 190, 200, 220, 226, 242, 245, 262, 273
Offset: 1

Author

Ant King, Jan 24 2007

Keywords

Comments

Here the length of an aliquot sequence is defined to be the length of the transient part of its trajectory + the length of its terminal cycle.

Examples

			a(5)=50 because the fifth integer whose unitary aliquot sequence is longer than its ordinary aliquot sequence is 50.
		

References

  • Riele, H. J. J. te; Unitary Aliquot Sequences. MR 139/72, Mathematisch Centrum, 1972, Amsterdam.
  • Riele, H. J. J. te; Further Results On Unitary Aliquot Sequences. NW 2/73, Mathematisch Centrum, 1973, Amsterdam.

Programs

  • Mathematica
    UnitaryDivisors[n_Integer?Positive]:=Select[Divisors[n],GCD[ #,n/# ]==1&];sstar[n_]:=Plus@@UnitaryDivisors[n]-n;g[n_] := If[n > 0, sstar[n], 0];UnitaryTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];s[n_]:=DivisorSigma[1,n]-n;h[n_] := If[n > 0, s[n], 0];OrdinaryTrajectory[n_] := Most[NestWhileList[h, n, UnsameQ, All]];Select[Range[275],Length[UnitaryTrajectory[ # ]]>Length[OrdinaryTrajectory[ # ]] &]

Formula

Sequence gives those values of n for which A097032(n)>A098007(n).

A135244 Largest m such that the sum of the aliquot parts of m (A001065) equals n, or 0 if no such number exists.

Original entry on oeis.org

0, 4, 9, 0, 25, 8, 49, 15, 14, 21, 121, 35, 169, 33, 26, 55, 289, 77, 361, 91, 38, 85, 529, 143, 46, 133, 28, 187, 841, 221, 961, 247, 62, 253, 24, 323, 1369, 217, 81, 391, 1681, 437, 1849, 403, 86, 493, 2209, 551, 94, 589, 0, 667, 2809, 713, 106, 703, 68, 697, 3481
Offset: 2

Author

Ophir Spector (ospectoro(AT)yahoo.com), Nov 25 2007

Keywords

Comments

Previous name: Aliquot predecessors with the largest values.
Find each node's predecessors in aliquot sequences and choose the largest predecessor.
Climb the aliquot trees on shortest paths (see A135245 = Climb the aliquot trees on thickest branches).
The sequence starts at offset 2, since all primes satisfy sigma(n)-n = 1. - Michel Marcus, Nov 11 2014

Examples

			a(25) = 143 since 25 has 3 predecessors (95,119,143), 143 being the largest.
a(5) = 0 since it has no predecessors (see Untouchables - A005114).
		

Programs

  • Mathematica
    seq[max_] := Module[{s = Table[0, {n, 1, max}], i}, Do[If[(i = DivisorSigma[1, n] - n) <= max, s[[i]] = Max[s[[i]], n]], {n, 2, (max - 1)^2}]; Rest @ s]; seq[50]
  • PARI
    lista(nn) = {for (n=2, nn, k = (n-1)^2; while(k && (sigma(k)-k != n), k--); print1(k, ", "););} \\ Michel Marcus, Nov 11 2014

Extensions

a(1)=0 removed and offset set to 2 by Michel Marcus, Nov 11 2014
New name from Michel Marcus, Oct 31 2023

A180202 The product of the two numbers in an amicable pair, A002025(n) * A002046(n).

Original entry on oeis.org

62480, 1432640, 7660880, 27931280, 39685376, 116636864, 179299575, 318523136, 4794813680, 4483640576, 4773473775, 6100571295, 7076217500, 12475715175, 17094480975, 15069863936, 21699524864, 24011966300, 30304399616
Offset: 1

Author

T. D. Noe, Aug 15 2010

Keywords

Comments

This sequence initially shares many terms with A180163 because small amicable pairs are sometimes consecutive terms in the sorted list of amicable numbers, A063990.
First differs from A180163 at a(9). - Omar E. Pol, Oct 25 2017

Examples

			a(9) = A002025(9) * A002046(9) = 63020 * 76084 = 4794813680.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSigma[1,n]-n; smallAmicableQ[n_] := Module[{b=s[n]}, n
    				

Formula

a(n) = A259180(2n-1) * A259180(2n). - Omar E. Pol, Oct 22 2017

A180330 Smallest amicable number of the form 2^n * p * q for which the larger member of the amicable pair has the same form, where p and q are distinct odd primes.

Original entry on oeis.org

2620, 10744, 66928, 2082464, 7677248, 1750776704, 749380864, 7074650624, 25937232896, 161899964416, 3949032574976, 56691934109696, 162222327218176, 5469697508737024, 21547979005558784, 48336727662002176, 2961911925308653568, 5591728346540539904
Offset: 2

Author

T. D. Noe, Sep 07 2010

Keywords

Comments

That is, the amicable pair is (2^n pq, 2^n rs) for odd primes p, q, r, s. See A180331 for the numbers 2^n rs. It is easy to show that the four primes must satisfy the equation (p+1)(q+1) = (r+1)(s+1). These amicable pairs are a subset of the regular type (2,2) pairs, which are cataloged by Pedersen. These amicable pairs can be found by using Herman te Riele's method 2. Amicable pairs of this form are known for 1 < n < 49. Do they exist for all n?

Crossrefs

Extensions

a(18)-a(19) from Chernykh's database added by Amiram Eldar, Jul 26 2025

A183019 Conjectured list of multisociable numbers.

Original entry on oeis.org

6, 28, 120, 220, 284, 496, 672, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368, 8128, 10744, 10856, 12285, 12496, 14264, 14288, 14536, 14595, 15472, 17296, 18416, 30240, 32760, 63020, 66928, 66992, 67095, 69615, 71145, 76084, 79750, 87633
Offset: 1

Author

William Rex Marshall, Jan 08 2011

Keywords

A192290 Anti-amicable numbers.

Original entry on oeis.org

14, 16, 92, 114, 5566, 6596, 1077378, 1529394, 3098834, 3978336, 70774930, 92974314
Offset: 1

Author

Paolo P. Lava, Jun 29 2011

Keywords

Comments

Like A063990 but using anti-divisors. sigma*(a)=b and sigma*(b)=a, where sigma*(n) is the sum of the anti-divisors of n. Anti-perfect numbers A073930 are not included in the sequence.
There are also chains of 3 or more anti-sociable numbers.
With 3 numbers the first chain is: 1494, 2056, 1856.
sigma*(1494) = 4+7+12+29+36+49+61+103+332+427+996 = 2056.
sigma*(2056) = 3+9+16+1371+457 = 1856.
sigma*(1856) = 3+47+79+128+1237 = 1494.
With 4 numbers the first chain is: 46, 58, 96, 64.
sigma*(46) = 3+4+7+13+31 = 58.
sigma*(58) = 3+4+5+9+13+23+39 = 96.
sigma*(96) = 64.
sigma*(64) = 3+43 = 46.
No other pairs with the larger term < 2147000000. - Jud McCranie Sep 24 2019

Examples

			sigma*(14) = 3+4+9 = 16; sigma*(16) = 3+11 = 14.
sigma*(92) = 3+5+8+37+61= 114; sigma*(114) = 4+12+76 = 92.
sigma*(5566) = 3+4+9+44+92+484+1012+1237+3711= 6596; sigma*(6596) = 3+8+79+136+776+167+4397 = 5566.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A192290 := proc(q)
    local a,b,c,k,n;
    for n from 1 to q do
      a:=0;
      for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then a:=a+k; fi; od;
      b:=a; c:=0;
      for k from 2 to b-1 do if abs((b mod k)-k/2)<1 then c:=c+k; fi; od;
      if n=c and not a=c then print(n); fi;
    od; end:
    A192290(1000000000);
  • Python
    from sympy import divisors
    def sigma_s(n):
        return sum([2*d for d in divisors(n) if n > 2*d and n % (2*d)] +
            [d for d in divisors(2*n-1) if n > d >=2 and n % d] +
            [d for d in divisors(2*n+1) if n > d >=2 and n % d])
    A192290 = [n for n in range(1,10**4) if sigma_s(n) != n and sigma_s(sigma_s(n)) == n] # Chai Wah Wu, Aug 14 2014

Extensions

a(7)-a(12) from Donovan Johnson, Sep 12 2011

A212327 Numbers k such that A001065(x)*x = k has at least two solutions.

Original entry on oeis.org

36, 62480, 141440, 1245335, 1432640, 2286080, 6680960, 7660880, 27931280, 39685376, 116636864, 179299575, 318047135, 318523136, 358491735, 533718135, 709131500, 1119849500, 1122571695, 1814416175, 2081125376, 3565970135, 3991520000, 4141021500, 4483640576
Offset: 1

Author

Naohiro Nomoto, May 18 2012

Keywords

Comments

Products of pairs of amicable numbers are members of this sequence.

Examples

			For k = 36, A001065(6)*6 = 36, A001065(9)*9 = 36, therefore 36 is a term.
		

Crossrefs

Programs

  • Mathematica
    q[k_] := DivisorSum[k, 1 &, # * (DivisorSigma[1, #] - #) == k &] > 1; Select[Range[23*10^5], q] (* Amiram Eldar, Jul 01 2025 *)
  • PARI
    isok(k) = {my(d = divisors(k, 1), c = 0); for(i = 1, #d, if(d[i][1] * (sigma(d[i][2]) - d[i][1]) == k, c++; if(c == 2, break))); c == 2;} \\ Amiram Eldar, Jul 01 2025

Extensions

a(9)-a(25) from Donovan Johnson, May 21 2012

A259953 The sum (in nondecreasing order) of the two numbers in an amicable pair.

Original entry on oeis.org

504, 2394, 5544, 10584, 12600, 21600, 26880, 35712, 133920, 138240, 139104, 157248, 168480, 224640, 245520, 262080, 294840, 311040, 348192, 357120, 388800, 399168, 645624, 698544, 749952, 756000, 892800, 955206, 1017792, 1048320, 1270080, 1296000, 1296000, 1315440, 1347840, 1451520, 1522800, 1666560, 1781136, 1879200, 2041200
Offset: 1

Author

Omar E. Pol, Jul 10 2015

Keywords

Comments

Also the common value of sigma(x) = sigma(y) of the amicable pairs (x < y) ordered by nondecreasing sum (x + y). See A259933.
Duplicates occur, e.g., a(32) = a(33) = 1296000.
Another version of A180164.
First differs from both A161005 and A180164 at a(9).

Examples

			------------------------------------------
      A m i c a b l e   p a i r      Sum
------------------------------------------
n     A260086(n)  +  A260087(n)  =   a(n)
------------------------------------------
1         220            284          504
2        1184           1210         2394
3        2620           2924         5544
4        5020           5564        10584
5        6232           6368        12600
6       10744          10856        21600
7       12285          14595        26880
8       17296          18416        35712
9       66928          66992       133920
10      67095          71145       138240
11      63020          76084       139104
12      69615          87633       157248
...       ...            ...          ...
32     609928         686072      1296000
33     643336         652664      1296000
...
		

Formula

a(n) = A259933(2n-1) + A259933(2n) = A260086(n) + A260087(n).
Previous Showing 51-60 of 133 results. Next