cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A115137 Second diagonal of triangle A113647 (called Y(2,1)).

Original entry on oeis.org

1, 1, 7, 41, 247, 1545, 9975, 66057, 446455, 3067913, 21372919, 150618121, 1071841271, 7691763721, 55600938999, 404488323081, 2959189475319, 21757613309961, 160691417776119, 1191577871450121, 8868160862158839
Offset: 0

Views

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Examples

			41=a(3)= A062992(3) - 2*A062992(2) = 67 - 2*13.
		

Programs

  • Mathematica
    CoefficientList[Series[(1-2*x)*(2*(1-Sqrt[1-8*x])/(4*x)-1)/(1+x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)

Formula

a(n)= b(n) - 2*b(n-1) with b(n):=A062992(n)= A064062(n+1), n>=1. a(0):=1.
G.f.: (1-2*x)*(2*c(2*x)-1)/(1+x) with c(x) g.f. of A000108 (Catalan).
a(n)= A113647(n, n), n>=1.
Recurrence: (n-2)*(n+1)*a(n) = (7*n^2-19*n+14)*a(n-1) + 4*(n-1)*(2*n-3)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 2^(3*n+2)/(3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012

A155761 Riordan array (c(2*x^2), x*c(2*x^2)) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 4, 0, 1, 8, 0, 6, 0, 1, 0, 20, 0, 8, 0, 1, 40, 0, 36, 0, 10, 0, 1, 0, 112, 0, 56, 0, 12, 0, 1, 224, 0, 224, 0, 80, 0, 14, 0, 1, 0, 672, 0, 384, 0, 108, 0, 16, 0, 1, 1344, 0, 1440, 0, 600, 0, 140, 0, 18, 0, 1
Offset: 0

Views

Author

Paul Barry, Jan 26 2009

Keywords

Comments

Inverse of Riordan array (1/(1+2*x^2), x/(1+2*x^2)).

Examples

			Triangle begins:
    1;
    0,   1;
    2,   0,   1;
    0,   4,   0,  1;
    8,   0,   6,  0,  1;
    0,  20,   0,  8,  0,  1;
   40,   0,  36,  0, 10,  0,  1;
    0, 112,   0, 56,  0, 12,  0, 1;
  224,   0, 224,  0, 80,  0, 14, 0, 1;
Production matrix begins as:
  0, 1;
  2, 0, 1;
  0, 2, 0, 1;
  0, 0, 2, 0, 1;
  0, 0, 0, 2, 0, 1;
  0, 0, 0, 0, 2, 0, 1;
  0, 0, 0, 0, 0, 2, 0, 1;
  0, 0, 0, 0, 0, 0, 2, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 2, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1;
		

Crossrefs

Cf. A064062, A126087 (row sums).

Programs

  • Mathematica
    T[n_, k_]:= (1+(-1)^(n-k))*2^((n-k-2)/2)*((k+1)/(n+1))*Binomial[n+1, (n-k)/2];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 06 2021 *)
  • Sage
    def A155761(n,k): return (1+(-1)^(n-k))*2^((n-k-2)/2)*((k+1)/(n+1))*binomial(n+1, (n-k)/2)
    flatten([[A155761(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 06 2021

Formula

T(n,k) = (1+(-1)^(n-k)) * ((k+1)/(n+1)) * binomial(n+1, (n-k)/2) * 2^((n-k-2)/2).
Sum_{k=0..n} T(n, k) = A126087(n).
T(n,k) = 2^((n-k)/2) * A053121(n,k). - Philippe Deléham, Feb 11 2009
Sum_{k=0..n} T(2*n-k, k) = A064062(n+1). - G. C. Greubel, Jun 06 2021

A115125 A sequence related to Catalan numbers A000108.

Original entry on oeis.org

1, 2, 4, 16, 80, 448, 2688, 16896, 109824, 732160, 4978688, 34398208, 240787456, 1704034304, 12171673600, 87636049920, 635361361920, 4634400522240, 33985603829760, 250420238745600, 1853109766717440, 13765958267043840, 102618961627054080, 767411365211013120
Offset: 0

Views

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Comments

Essentially identical to A025225.
The convolution of this sequence with the sequence {(-1)^n} is A064062 (see also A062992).
The sequence A064062 appears in the Derrida et al. 1992 reference (see A064094) for alpha=2, beta=1 (or alpha=1, beta=2).

Crossrefs

Programs

  • Magma
    [1] cat [2^n*Binomial(2*n-2, n-1)/n: n in [1..30]]; // G. C. Greubel, May 03 2018
  • Maple
    a:= n-> `if`(n=0, 1, 2^n*binomial(2*n-2, n-1)/n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 25 2022
  • Mathematica
    a[0] = 1; a[n_] := 2^n*CatalanNumber[n - 1]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 09 2013 *)
  • PARI
    a(n)=if(n==0,1,polcoeff((1-sqrt(1-8*x+x*O(x^n)))/2,n)); \\ Joerg Arndt, May 14 2013
    

Formula

a(n) = C(n-1)*2^n, n>=1, a(0):=1, with C(n):=A000108(n) (Catalan).
G.f.: 1 + (2*x)*c(2*x) with c(x):=(1-sqrt(1-4*x))/(2*x), the o.g.f. of Catalan numbers A000108.
a(n) = A025225(n), n>0. - R. J. Mathar, Aug 11 2008
G.f.: (3 - sqrt(1-8*x))/2 = 2 - U(0) where U(k)=1 - 2*x/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 29 2012
G.f.: 2 - 1/Q(0), where Q(k)= 1 + (8*k+2)*x/(k+1 - x*(2*k+2)*(8*k+6)/(2*x*(8*k+6) + (2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 14 2013

A116872 Subtriangle of generalized Catalan triangle CM(1,2) = A116880.

Original entry on oeis.org

1, 3, 7, 13, 29, 41, 67, 147, 195, 247, 381, 829, 1069, 1277, 1545, 2307, 4995, 6339, 7379, 8451, 9975, 14589, 31485, 39549, 45373, 50733, 56829, 66057, 95235, 205059, 255747, 290691, 320707, 351187, 388099
Offset: 1

Views

Author

Wolfdieter Lang, Mar 24 2006

Keywords

Comments

This triangle a(n,m) appears for the unnormalized one-point function T(n,n+m-1) in the totally asymmetric exclusion process (see A067323 for the references) for the (unphysical) values alpha=1, beta=2.

Crossrefs

Row sums give A116879.

Formula

a(n,m)=A116880(n,m-1), n>=m>=1.
G.f. for column m>=1: (x^m)*(-(C2(m) + ((2^2)/x^(m-1))*(c(m-1,2*x)-1)/(2*x)) + 2*(C2(m-1) + (2/x^(m-1))*c(m-2,2*x))*c(2*x))/(1+x) where C2(n):=A064062(n), c(m,x):=sum(C(k)*x^k,k=0..m) with C(k):=A000108(k) (Catalan numbers) and c(x) is the g.f. of A000108.

A157491 A050165*A130595 as infinite lower triangular matrices.

Original entry on oeis.org

1, 0, 1, 0, -1, 2, 0, 2, -6, 5, 0, -5, 20, -28, 14, 0, 14, -70, 135, -120, 42, 0, -42, 252, -616, 770, -495, 132, 0, 132, -924, 2730, -4368, 4004, -2002, 429, 0, -429, 3432, -11880, 23100, -27300, 19656, -8008, 1430
Offset: 0

Views

Author

Philippe Deléham, Mar 01 2009

Keywords

Comments

Triangle, read by rows, given by [0,-1,-1,-1,-1,-1,-1,...] DELTA [1,1,1,1,1,1,1,1,...] where DELTA is the operator defined in A084938. Triangle related to k-regular trees.

Examples

			Triangle begins:
  1;
  0,  1;
  0, -1,  2;
  0,  2, -6,   5;
  0, -5, 20, -28, 14;
  ...
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000012(n), A000984(n), A089022(n), A035610(n), A130976(n), A130977(n), A130978(n), A130979(n), A130980(n), A131521(n) for x = 0,1,2,3,4,5,6,7,8,9,10 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A064093, A064092, A064091, A064090, A064089, A064088, A064087, A064063, A064062, A000108, A000012, A064310, A064311, A064325, A064326, A064327, A064328, A064329, A064330, A064331, A064332, A064333 for x = -9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12 respectively. [Philippe Deléham, Mar 03 2009]

A244469 a(0) = 0, thereafter, a(n) = 2^(2*n-1)*( binomial((3*n-1)/2,n) - binomial(3*n/2, n)/3 ).

Original entry on oeis.org

0, 1, 7, 58, 515, 4746, 44758, 428772, 4154403, 40599130, 399429602, 3950996556, 39255152846, 391466112324, 3916110379020, 39281346256008, 394942611929379, 3978982062756090, 40160256911157610, 405995113593507900, 4110284071450416090, 41666530928566504620, 422876855107176561780
Offset: 0

Views

Author

N. J. A. Sloane, Jun 28 2014

Keywords

Crossrefs

Programs

  • Magma
    [n eq 0 select 0 else Round(2^(2*n-1)*(Gamma((3*n+1)/2)/Gamma((n+1)/2) - Gamma((3*n+2)/2)/(3*Gamma((n+2)/2)))/Factorial(n)): n in [0..30]]; // G. C. Greubel, Apr 17 2019
    
  • Maple
    f4:=n->-(2^(2*n-1)/3)*binomial(3*n/2,n) + 2^(2*n-1)*binomial((3*n-1)/2,n);
    [seq(f4(n),n=1..40)]; # then prepend f4(0)=0.
  • Mathematica
    Join[{0}, Table[-(2^(2 n - 1)/3) Binomial[3 n/2, n] + 2^(2 n - 1) Binomial[(3 n - 1)/2, n], {n, 1, 30}]] (* Vincenzo Librandi, Jun 29 2014 *)
  • PARI
    {a(n) = if(n==0,0, 2^(2*n-1)*(binomial((3*n-1)/2, n) - binomial(3*n/2, n)/3) )}; \\ G. C. Greubel, Apr 17 2019
    
  • Sage
    def a(n):
       if n==0: return 0
       else: return 2^(2*n-1)*(binomial((3*n-1)/2, n) - binomial(3*n/2, n)/3)
    [a(n) for n in (0..30)] # G. C. Greubel, Apr 17 2019

Formula

G.f.: g'(x)/g(x)-1, g(x)=(2*sqrt(9*x+1)*sin(arcsin((54*x^2+27*x+2)/(2*(9*x+1)^(3/2)))/3))/3-1/3. - Vladimir Kruchinin, Apr 14 2019
From Peter Bala, Mar 05 2022: (Start)
a(n) = (1/n)*Sum_{k = 0..n} k*2^(n-k)*binomial(n+k-1,k)*binomial(2*n-k-1,n-k) for n >= 1.
a(n) = [x^n] G(x)^n = [x^n] 1/(1 - x*C(2*x))^n, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108 and G(x) is the g.f. of A064062.
n*(n-1)*(6*n-7)*a(n) = - 18*(n-1)*a(n-1) + 12*(3*n-5)*(6*n-1)*(3*n-4)*a(n-2) with a(1) = 1 a(2) = 7.
exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + x + 4*x^2 + 23*x^3 + 156*x^4 + ... is the g.f. of A007297.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. (End)

A117505 Triangle of coefficients for polynomials used for the column g.f.s of triangle A116880, called CM(1,2).

Original entry on oeis.org

1, 2, 1, 2, 4, 3, 2, 4, 16, 13, 2, 4, 16, 80, 67, 2, 4, 16, 80, 448, 381, 2, 4, 16, 80, 448, 2688, 2307, 2, 4, 16, 80, 448, 2688, 16896, 14589, 2, 4, 16, 80, 448, 2688, 16896, 109824, 95235, 2, 4, 16, 80, 448, 2688
Offset: 0

Views

Author

Wolfdieter Lang, Apr 13 2006

Keywords

Comments

The g.f. G(m,x) for column m=1,2,... of triangle A116880=CM(1,2) is x*(-sum(a(m,k)*x^(k-1),k=1..m) + sum(a(m,k)*x^k,k=0..m)*2*c(2*x))/(1+x), with the o.g.f. c(x) of A000108 (Catalan numbers).

Examples

			m=3: G(3,x)= x*(-(4+16*x+13*x^2) +
(2+4*x+16*x^2+13*x^3)*2*c(2*x))/(1+x).
		

Formula

a(m,m)= A064062(m) =:C(2;m), m>=0 and a(m,k)=2*A052701(k) = C(k)*2^(k+1), for k=1,...,m-1 and C(k):=A000108(k) (Catalan).

A157328 Expansion of 1/(1-2x*c(4x)) with c(x) g.f. of Catalan numbers (A000108).

Original entry on oeis.org

1, 2, 12, 104, 1072, 12192, 147648, 1867392, 24380160, 326105600, 4445965312, 61555599360, 863154221056, 12233140576256, 174954419109888, 2521749245558784, 36595543723671552, 534249057803698176
Offset: 0

Views

Author

Philippe Deléham, Feb 27 2009

Keywords

Comments

Hankel transform is A122067.

Crossrefs

Formula

a(n) = 2^n*A064062(n).
From Paul Barry, Sep 15 2009: (Start)
a(n) = Sum_{k, 0<=k<=n} A039599(n,k)*(-2)^k*4^(n-k).
Integral representation: a(n) = (1/(2*Pi))*Integral(x^n*sqrt(x(16-x))/(x(2+x)),x,0,16). (End)
a(n) = upper left term in M^n, M = an infinite square production matrix as follows:
2, 2, 0, 0, 0, 0, ...
4, 4, 4, 0, 0, 0, ...
4, 4, 4, 4, 0, 0, ...
4, 4, 4, 4, 4, 0, ...
4, 4, 4, 4, 4, 4, ...
...
- Gary W. Adamson, Jul 13 2011
Conjecture: n*a(n) +2*(12-7n)*a(n-1) +16*(3-2n)*a(n-2) = 0. - R. J. Mathar, Dec 14 2011
a(n) = (12*(-1)^n*2^(n - 1)*sqrt(Pi)*n! + 16^n*gamma(n - 1/2)*hypergeometric2F1([1, -n], [3/2 - n], -1/8))/(4*sqrt(Pi)*n!). - Karol A. Penson, Feb 04 2025

Extensions

Entries corrected by R. J. Mathar, Dec 14 2011
Previous Showing 21-28 of 28 results.