cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 51 results. Next

A361264 Multiplicative with a(p^e) = p^(e + 2), e > 0.

Original entry on oeis.org

1, 8, 27, 16, 125, 216, 343, 32, 81, 1000, 1331, 432, 2197, 2744, 3375, 64, 4913, 648, 6859, 2000, 9261, 10648, 12167, 864, 625, 17576, 243, 5488, 24389, 27000, 29791, 128, 35937, 39304, 42875, 1296, 50653, 54872, 59319, 4000, 68921, 74088, 79507, 21296, 10125
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    g[p_, e_] := p^(e+2); a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1 + p^3*X/(1 - p*X))[n], ", "))

Formula

Dirichlet g.f.: Product_{primes p} (1 + p^3/(p^s - p)).
Dirichlet g.f.: zeta(s-3) * zeta(s-1) * Product_{primes p} (1 + p^(4-2*s) - p^(6-2*s) - p^(1-s)).
Sum_{k=1..n} a(k) ~ c * zeta(3) * n^4 / 4, where c = Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A330523 = 0.53589615382833799980850263131854595064822237...
From Amiram Eldar, Sep 01 2023: (Start)
a(n) = n * A007947(n)^2 = A064549(n) * A007947(n) = A064549(A064549(n)).
A000005(a(n)) = A360997(n).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^2*(p-1))) = A065483. (End)

A367406 The exponentially odd numbers (A268335) multiplied by their squarefree kernels (A007947).

Original entry on oeis.org

1, 4, 9, 25, 36, 49, 16, 100, 121, 169, 196, 225, 289, 361, 441, 484, 529, 144, 676, 81, 841, 900, 961, 64, 1089, 1156, 1225, 1369, 1444, 1521, 400, 1681, 1764, 1849, 2116, 2209, 2601, 2809, 324, 3025, 784, 3249, 3364, 3481, 3721, 3844, 4225, 4356, 4489, 4761
Offset: 1

Views

Author

Amiram Eldar, Nov 17 2023

Keywords

Comments

Analogous to A355038, with the exponentially odd numbers instead of the square numbers (A000290).
This sequence is a permutation of the square numbers.

Crossrefs

Programs

  • Mathematica
    s[n_] := n * Times @@ FactorInteger[n][[;;, 1]]; s /@ Select[Range[100], AllTrue[FactorInteger[#][[;; , 2]], OddQ] &]
  • PARI
    b(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, f[i,1]^(f[i,2]+1), 0));}
    lista(kmax) = {my(b1); for(k = 1, kmax, b1 = b(k); if(b1 > 0, print1(b1, ", ")));}

Formula

a(n) = A064549(A268335(n)).
a(n) = A268335(n)*A367417(n).
a(n) = A367407(n)^2.
a(n) = A268335(n)^2/A367418(n).
Sum_{k=1..n} a(k) = c * n^3 / 3, where c = (Pi^2/(15*d^3)) * Product_{p prime} (1 - 1/(p^3*(p+1))) = 1.78385074227198915372..., and d = A065463 is the asymptotic density of the exponentially odd numbers.
a(n) = A053143(A268335(n)). - Amiram Eldar, Nov 30 2023

A078326 Numbers n such that n-1 and n are a pair of consecutive powerful numbers.

Original entry on oeis.org

9, 289, 676, 9801, 12168, 235225, 332929, 465125, 1825201, 11309769, 384199201, 592192225, 4931691076, 5425069448, 13051463049, 221322261601, 443365544449, 865363202001, 8192480787001, 11968683934832, 13325427460801, 15061377048201, 28821995554248
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Comments

a(n) = u*rad(u) = v*rad(v)+1 for appropriate u, v, where rad(n) = A007947(n) is the squarefree kernel.
Also numbers n such that n(n-1) is a powerful number. - Charles R Greathouse IV, Aug 08 2013

Crossrefs

Programs

Formula

a(n) = A060355(n)+1.

Extensions

a(22)-a(23) from Donovan Johnson, Jul 29 2011

A350996 a(n) = Sum_{k=1..n} k * rad(k).

Original entry on oeis.org

1, 5, 14, 22, 47, 83, 132, 148, 175, 275, 396, 468, 637, 833, 1058, 1090, 1379, 1487, 1848, 2048, 2489, 2973, 3502, 3646, 3771, 4447, 4528, 4920, 5761, 6661, 7622, 7686, 8775, 9931, 11156, 11372, 12741, 14185, 15706, 16106, 17787, 19551, 21400, 22368, 23043, 25159
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 28 2022

Keywords

Examples

			a(4) = 22; a(4) = Sum_{k=1..4} k * rad(k) = 1*rad(1) + 2*rad(2) + 3*rad(3) + 4*rad(4) = 1*1 + 2*2 + 3*3 + 4*2 = 22.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := n * Times @@ FactorInteger[n][[;; , 1]]; Accumulate @ Array[f, 50] (* Amiram Eldar, Jan 29 2022 *)
  • PARI
    a(n) = sum(k=1, n, k*factorback(factorint(k)[, 1])); \\ Michel Marcus, Jan 30 2022

Formula

a(n) = Sum_{k=1..n} A064549(k).
a(n) ~ c * n^3 / 3, where c = A065463. - Amiram Eldar, Dec 09 2023

A367407 a(n) = sqrt(A367406(n)).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 4, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 12, 26, 9, 29, 30, 31, 8, 33, 34, 35, 37, 38, 39, 20, 41, 42, 43, 46, 47, 51, 53, 18, 55, 28, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 44, 89, 91, 93, 94, 95, 24, 97
Offset: 1

Views

Author

Amiram Eldar, Nov 17 2023

Keywords

Comments

A permutation of the positive integers.

Crossrefs

Programs

  • Mathematica
    s[n_] := Sqrt[n * Times @@ FactorInteger[n][[;;, 1]]]; s /@ Select[Range[100], AllTrue[FactorInteger[#][[;; , 2]], OddQ] &]
  • PARI
    b(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, f[i,1]^(f[i,2]+1), 0));}
    lista(kmax) = {my(b1); for(k = 1, kmax, b1 = b(k); if(b1 > 0, print1(sqrtint(b1), ", ")));}

Formula

a(n) = sqrt(A064549(A268335(n))).
a(n) = sqrt(A268335(n)*A367417(n)).
a(n) = A268335(n)/A367419(n).
Sum_{k=1..n} a(k) = c * n^2 / 2, where c = (zeta(3)/(zeta(2)*d^2)) * Product_{p prime} (1 - 1/(p^2*(p+1))) = A253905 * A065465 / d^3 = 1.29812028442810841122..., and d = A065463 is the asymptotic density of the exponentially odd numbers (A268335).

A373318 Numerator of the asymptotic density of numbers that are unitarily divided by n.

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 6, 1, 2, 1, 10, 1, 12, 3, 8, 1, 16, 1, 18, 1, 4, 5, 22, 1, 4, 3, 2, 3, 28, 2, 30, 1, 20, 4, 24, 1, 36, 9, 8, 1, 40, 1, 42, 5, 8, 11, 46, 1, 6, 1, 32, 3, 52, 1, 8, 3, 4, 7, 58, 1, 60, 15, 4, 1, 48, 5, 66, 2, 44, 6, 70, 1, 72, 9, 8, 9, 60, 2, 78
Offset: 1

Views

Author

Amiram Eldar, Jun 01 2024

Keywords

Comments

Numbers that are unitarily divided by n are numbers k such that n is a unitary divisor of k, or equivalently, numbers of the form m*n, with gcd(m, n) = 1.

Examples

			Fractions begin with: 1, 1/4, 2/9, 1/8, 4/25, 1/18, 6/49, 1/16, 2/27, 1/25, 10/121, 1/36, ...
For n = 2, the numbers that are unitarily divided by 2 are the numbers of the form 4*k+2 whose asymptotic density is 1/4. Therefore a(2) = numerator(1/4) = 1.
		

Crossrefs

Numbers that are unitarily divided by k: A000027 (k=1), A016825 (k=2), A016051 (k=3), A017113 (k=4), A051062 (k=8), A051063 (k=9).

Programs

  • Mathematica
    a[n_] := Numerator[EulerPhi[n]/n^2]; Array[a, 100]
  • PARI
    a(n) = numerator(eulerphi(n)/n^2);

Formula

a(n) = 1 if and only if n is in A090778.
a(n) = A000010(n) if and only if n is a cyclic number (A003277).
Let f(n) = a(n)/A373319(n). Then:
f(n) = A000010(n)/n^2 = A076512(n)/(n*A109395(n)).
f(n) = A173557(n)/A064549(n).
f(n) is multiplicative with f(p^e) = (1 - 1/p)/p^e.
Sum_{k=1..n} f(k) = (log(n) + gamma - zeta'(2)/zeta(2)) / zeta(2), where gamma is Euler's constant (A001620).

A073354 Binomial coefficient ( n, squarefree kernel(n) ).

Original entry on oeis.org

1, 1, 1, 6, 1, 1, 1, 28, 84, 1, 1, 924, 1, 1, 1, 120, 1, 18564, 1, 184756, 1, 1, 1, 134596, 53130, 1, 2925, 40116600, 1, 1, 1, 496, 1, 1, 1, 1947792, 1, 1, 1, 847660528, 1, 1, 1, 2104098963720, 344867425584, 1, 1, 12271512, 85900584, 10272278170, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 29 2002

Keywords

Comments

a(n)=1 iff n is squarefree.

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
      k:= convert(numtheory:-factorset(n),`*`);
      binomial(n,k)
    end proc:
    map(f, [$1..60]); # Robert Israel, May 07 2021
  • Mathematica
    a[n_] := Binomial[n, Times @@ FactorInteger[n][[All, 1]]];
    Table[a[n], {n, 1, 60}] (* Jean-François Alcover, May 11 2023 *)

Formula

a(n) = binomial(n, A007947(n)).

A308360 Product of positive divisors d of n that are divisible by every prime that divides n.

Original entry on oeis.org

1, 2, 3, 8, 5, 6, 7, 64, 27, 10, 11, 72, 13, 14, 15, 1024, 17, 108, 19, 200, 21, 22, 23, 1728, 125, 26, 729, 392, 29, 30, 31, 32768, 33, 34, 35, 46656, 37, 38, 39, 8000, 41, 42, 43, 968, 675, 46, 47, 82944, 343, 500, 51, 1352, 53, 5832, 55, 21952, 57, 58, 59
Offset: 1

Views

Author

Jaroslav Krizek, May 22 2019

Keywords

Examples

			The divisors of 12 that are divisible by both 2 and 3 are 6 and 12. So a(12) = 6 * 12 = 72.
		

Crossrefs

See A005361 and A057723 for number and sum of such divisors.

Programs

  • Magma
    [1] cat [&*[d: d in Divisors(n) |  d gt 1  and #[c: c in Divisors(d) | IsPrime(c)] eq #[d: d in Divisors(n) | IsPrime(d)]]: n in [2..100]]
  • Mathematica
    Table[Sqrt[(n*Product[If[PrimeQ[d], d, 1], {d, Divisors[n]}])^Product[ FactorInteger[n][[k, 2]], {k, 1, Length[FactorInteger[n]]}]], {n, 1, 100}] (* Vaclav Kotesovec, Jun 15 2019 *)

Formula

a(n) = n for squarefree numbers (A005117).
a(n) = A064549(n)^(A005361(n)/2). - Charlie Neder, Jun 03 2019

A355261 a(n) = largest-nth-power(n, 2) * radical(n) = A000188(n) * A007947(n), where largest-nth-power(n, e) is the largest positive integer b such that b^e divides n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 12, 13, 14, 15, 8, 17, 18, 19, 20, 21, 22, 23, 12, 25, 26, 9, 28, 29, 30, 31, 8, 33, 34, 35, 36, 37, 38, 39, 20, 41, 42, 43, 44, 45, 46, 47, 24, 49, 50, 51, 52, 53, 18, 55, 28, 57, 58, 59, 60, 61, 62, 63, 16, 65, 66, 67, 68
Offset: 1

Views

Author

Peter Luschny, Jul 12 2022

Keywords

Crossrefs

Programs

  • Maple
    with(NumberTheory): seq(LargestNthPower(n, 2)*Radical(n), n = 1..68);
  • Mathematica
    Array[Apply[Times, #[[All, 1]]]*Apply[Times, #1^Floor[#2/2] & @@ Transpose@ #] &@ FactorInteger[#] &, 68] (* Michael De Vlieger, Jul 12 2022 *)
  • Python
    from math import prod
    from sympy import factorint
    def A355261(n): return prod(p**((e>>1)+1) for p, e in factorint(n).items()) # Chai Wah Wu, Jul 13 2022

Formula

Multiplicative with a(p^e) = p^(1+floor(e/2)). - Amiram Eldar, Jul 13 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(3)/2) * Product_{p prime} (1 - 2/p^3 + 1/p^4) = 0.447583182004... . - Amiram Eldar, Nov 13 2022

A355263 a(n) = largest-nth-power(n, 3) * radical(n) = A053150(n) * A007947(n), where the largest-nth-power(n, e) is the largest positive integer b such that b^e divides n.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 4, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, 19, 10, 21, 22, 23, 12, 5, 26, 9, 14, 29, 30, 31, 4, 33, 34, 35, 6, 37, 38, 39, 20, 41, 42, 43, 22, 15, 46, 47, 12, 7, 10, 51, 26, 53, 18, 55, 28, 57, 58, 59, 30, 61, 62, 21, 8, 65, 66, 67, 34, 69
Offset: 1

Views

Author

Peter Luschny, Jul 12 2022

Keywords

Crossrefs

Programs

  • Maple
    with(NumberTheory): seq(LargestNthPower(n, 3)*Radical(n), n=1..69);
  • Mathematica
    f[p_, e_] := p^(1 + Floor[e/3]); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 13 2022 *)
  • Python
    from math import prod
    from sympy import factorint
    def A355263(n): return prod(p**(e//3+1) for p, e in factorint(n).items()) # Chai Wah Wu, Jul 13 2022

Formula

Multiplicative with a(p^e) = p^(1 + floor(e/3)). - Amiram Eldar, Jul 13 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(5)/2) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 2/p^5 + 1/p^6) = 0.3643121583... . - Amiram Eldar, Nov 13 2022
Previous Showing 31-40 of 51 results. Next