cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 51 results. Next

A361265 Multiplicative with a(p^e) = e * p^(e + 1), e > 0.

Original entry on oeis.org

1, 4, 9, 16, 25, 36, 49, 48, 54, 100, 121, 144, 169, 196, 225, 128, 289, 216, 361, 400, 441, 484, 529, 432, 250, 676, 243, 784, 841, 900, 961, 320, 1089, 1156, 1225, 864, 1369, 1444, 1521, 1200, 1681, 1764, 1849, 1936, 1350, 2116, 2209, 1152, 686, 1000, 2601, 2704
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    g[p_, e_] := e*p^(e+1); a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1 + p^2 * X / (1 - p*X)^2)[n], ", "))

Formula

Dirichlet g.f.: Product_{primes p} (1 + p^(s + 2)/(p^s - p)^2).
Dirichlet g.f.: zeta(s-2) * zeta(s-1)^2 * Product_{primes p} (1 - p^(4 - 3*s) + p^(2 - 2*s) + 2*p^(3 - 2*s) - p^(4 - 2*s) - 2*p^(1 - s)).
Sum_{k=1..n} a(k) ~ c * Pi^4 * n^3 / 108, where c = Product_{primes p} (1 - 3/p^2 + 2/p^3 + 1/p^4 - 1/p^5) = 0.3086489554825164955853322259998244718829914385...
a(n) = A005361(n) * A064549(n).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 - log(1-1/p))/p = 1.6843597117... . - Amiram Eldar, Sep 01 2023

A361266 Multiplicative with a(p^e) = p^(e + 3), e > 0.

Original entry on oeis.org

1, 16, 81, 32, 625, 1296, 2401, 64, 243, 10000, 14641, 2592, 28561, 38416, 50625, 128, 83521, 3888, 130321, 20000, 194481, 234256, 279841, 5184, 3125, 456976, 729, 76832, 707281, 810000, 923521, 256, 1185921, 1336336, 1500625, 7776, 1874161, 2085136, 2313441, 40000
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 06 2023

Keywords

Comments

In general, if the function is multiplicative with a(p^e) = p^(e + m) where m > 0, then Dirichlet g.f.: Product_{primes p} (1 + p^(m+1)/(p^s - p)).
Equivalently, Dirichlet g.f.: zeta(s-m-1) * zeta(s-1) * Product_{primes p} (1 + p^(2 + m - 2*s) - p^(2 + 2*m - 2*s) - p^(1 - s)).
Sum_{k=1..n} a(k) ~ c(m) * zeta(m+1) * n^(m+2) / (m+2), where c(m) = Product_{primes p} (1 - 1/p^2 - 1/p^(m+1) + 1/p^(m+2)).
Limit_{m->oo} c(m) = 6/Pi^2 = A059956.

Crossrefs

Programs

  • Maple
    f:= proc(n) local t;
      mul(t[1]^(t[2]+3), t = ifactors(n)[2])
    end proc:
    map(f, [$1..50]); # Robert Israel, Mar 07 2023
  • Mathematica
    g[p_, e_] := p^(e+3); a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1 + p^4*X/(1 - p*X))[n], ", "))
    
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,2] +=3); factorback(f); \\ Michel Marcus, Mar 07 2023

Formula

Dirichlet g.f.: Product_{primes p} (1 + p^4/(p^s - p)).
Dirichlet g.f.: zeta(s-4) * zeta(s-1) * Product_{primes p} (1 + p^(5 - 2*s) - p^(8 - 2*s) - p^(1 - s)).
Sum_{k=1..n} a(k) ~ c * Pi^4 * n^5 / 450, where c = Product_{primes p} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.5761527353856670595206110782641172754062471168028961885...
From Amiram Eldar, Sep 01 2023: (Start)
a(n) = n * A007947(n)^3 = A064549(n) * A007947(n)^2 = A361264(n) * A007947(n) = A064549(A064549(A064549(n))).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^3*(p-1))) = 1.148846213921... . (End)

A363172 Primitive terms of A363171: terms of A363171 with no proper divisor in A363171.

Original entry on oeis.org

6, 10, 14, 44, 52, 105, 136, 152, 184, 232, 248, 286, 374, 418, 442, 495, 506, 592, 656, 688, 752, 848, 944, 976, 1292, 1564, 1748, 1755, 1972, 2108, 2144, 2145, 2204, 2272, 2336, 2356, 2516, 2528, 2656, 2668, 2788, 2805, 2812, 2848, 2852, 2924, 2925, 3104, 3116
Offset: 1

Views

Author

Amiram Eldar, May 19 2023

Keywords

Comments

If k is a term then m*k is a term of A363171 for all m >= 1.
The least odd term is a(6) = 105, and the least term that is coprime to 6 is a(34832) = 37182145.

Crossrefs

Cf. A363171.

Programs

  • Mathematica
    q[n_] := DivisorSigma[-1, n * Times @@ FactorInteger[n][[;; , 1]]] > 2; primQ[n_] := q[n] && AllTrue[Divisors[n], # == n || ! q[#] &]; Select[Range[3200], primQ]
  • PARI
    A064549(n) = { my(f=factor(n)); prod(i=1, #f~, f[i, 1]^(f[i, 2]+1)); };
    isA363171(n) = sigma(A064549(n), -1) > 2;
    is(n) = { if(!isA363171(n), return(0)); fordiv(n, d, if(d < n && isA363171(d), return(0))); return(1) };

A364990 Coreful triperfect numbers: numbers k such that csigma(k) = 3*k, where csigma(k) is the sum of the coreful divisors of k (A057723).

Original entry on oeis.org

3600, 25200, 28224, 39600, 46800, 61200, 68400, 82800, 104400, 111600, 133200, 141120, 147600, 154800, 169200, 190800, 212400, 219600, 241200, 255600, 262800, 277200, 284400, 298800, 310464, 320400, 327600, 349200, 363600, 366912, 370800, 385200, 392400, 406800
Offset: 1

Views

Author

Amiram Eldar, Aug 15 2023

Keywords

Comments

A coreful divisor d of a number k is a divisor with the same set of distinct prime factors as k, or rad(d) = rad(k), where rad(k) is the largest squarefree divisor of k (A007947) (the term "coreful divisor" was used by Hardy and Subbarao, 1983).
If k is a term, then also m*k is, for any squarefree m coprime to k. Thus there are infinitely many coreful triperfect numbers, and all of them can be generated from the sequence of primitive terms, which is the subsequence of powerful terms of this sequence. This sequence is c(n) = A064549(A005820(n)), i.e., the triperfect numbers (A005820), multiplied by their squarefree kernel (A007947): 3600, 28224, 1071645696, 1651818858099200, 532098668445696, 317519577357516800, ...
The asymptotic density of this sequence is Sum_{i>=1} beta(c(i))/c(i), where beta(n) = (6/Pi^2) * Product_{p|n} (p/(p+1)) = 0.0000797856... . If there are only 6 triperfect numbers, then the exact value of this density is 18575679807276818039685539/(23589576231586703755916083200 * Pi^2).

Examples

			3600 is in the sequence since its coreful divisors are {30, 60, 90, 120, 150, 180, 240, 300, 360, 450, 600, 720, 900, 1200, 1800, 3600}, whose sum is 10800 = 3 * 3600.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1)-1; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[500000], s[#] == 3*# &]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, sigma(f[i, 1]^f[i, 2]) - 1);}
    is(n) = s(n) == 3*n;

A381077 Sorted positions of first appearances in A380986 (product of prime indices minus product of distinct prime indices).

Original entry on oeis.org

1, 9, 25, 49, 63, 81, 99, 121, 125, 135, 169, 171, 245, 279, 289, 343, 361, 363, 369, 375, 387, 477, 529, 531, 575, 603, 625, 675, 711, 729, 747, 833, 841, 847, 873, 875, 891, 909, 961, 981, 1029, 1083, 1125, 1127, 1179, 1225, 1251, 1377, 1413, 1445, 1467
Offset: 1

Views

Author

Gus Wiseman, Feb 20 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A position of first appearance in a sequence q is an index k such that q(k) is different from q(j) for all j < k.
All terms are odd.

Examples

			The terms together with their prime indices begin:
     1: {}
     9: {2,2}
    25: {3,3}
    49: {4,4}
    63: {2,2,4}
    81: {2,2,2,2}
    99: {2,2,5}
   121: {5,5}
   125: {3,3,3}
   135: {2,2,2,3}
   169: {6,6}
   171: {2,2,8}
   245: {3,4,4}
   279: {2,2,11}
		

Crossrefs

For length instead of product we have A151821, firsts of A046660.
For factors instead of indices we have A381076, sorted firsts of A066503.
For sum of factors instead of product of indices we have A381075 (unsorted A280286), A280292.
For quotient instead of difference we have A380988 (unsorted A380987), firsts of A290106.
For quotient and factors we have A001694 (unsorted A064549), firsts of A003557.
For sum instead of product we have A380957 (unsorted A380956), firsts of A380955.
Sorted firsts of A380986, which has nonzero terms at positions A038838.
A000040 lists the primes, differences A001223.
A003963 gives product of prime indices, distinct A156061.
A005117 lists the squarefree numbers, complement A013929.
A007947 gives squarefree kernel.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, length A001222.
A304038 lists distinct prime indices, sum A066328, length A001221.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    q=Table[Times@@prix[n]-Times@@Union[prix[n]],{n,10000}];
    Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]

A250209 a(n) = least k such that k * n is in A072226, or 0 if no such k exists.

Original entry on oeis.org

2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 5, 1, 2, 2, 1, 2, 1, 6, 1, 1, 2, 5, 1, 1, 1, 1, 1, 8, 34, 8, 1, 2, 1, 10, 1, 2, 350, 2, 1, 111, 4, 1, 3, 16, 4, 15, 28, 3, 1, 206, 3, 10, 2, 1, 1, 2, 3, 1, 15, 637, 12, 1, 4, 22, 17, 104, 4, 2, 1012, 1, 1
Offset: 1

Views

Author

Eric Chen, Jan 18 2015

Keywords

Comments

Conjecture: a(n) > 0 for all n.
a(n) is currently unknown for n = 121, 124, 143, 162, 171, 172, 185, 188, 197, 215, ..., for which we have n * a(n) > 130000.
a(121) = (A117545(2048))/11 and they are both currently unknown.
A117545(2^n) = a(A064549(n)).
a(130) = 917, a(144) = 820, a(164) = 720, a(201) = 606. - Max Alekseyev, Dec 04 2024

Programs

  • Mathematica
    Table[k=1; While[!PrimeQ[Cyclotomic[n*k, 2]], k++]; k, {n, 43}]
  • PARI
    a(n) = {k = 1; while (!isprime(polcyclo(k*n, 2)), k++); k;} \\ Michel Marcus, Jan 18 2015

A334151 Numbers k such that k / rad(k) > m / rad(m) for all m < k.

Original entry on oeis.org

1, 4, 8, 16, 27, 32, 64, 128, 243, 256, 512, 1024, 2048, 4096, 6561, 8192, 16384, 32768, 59049, 65536, 131072, 262144, 524288, 1048576, 1594323, 2097152, 4194304, 8388608, 14348907, 16777216, 33554432, 67108864, 129140163, 134217728, 268435456
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 16 2020

Keywords

Comments

The terms listed in the Data section are numbers of the form 2^i or 3^ceiling(j*(1 + sqrt(2))), i >= 2, j >= 0 (empirical observation).

Crossrefs

Programs

  • Mathematica
    pp = 4; nn = 2^29; j = 0; c = e[_] = 1; r = Prime@ Range[pp];
    Do[(e[#1]++; Set[{k, m}, {#1^#2, #1^(#2 - 1)}]) & @@
      First@ MinimalBy[Array[{#, e[#]} &[r[[#]]] &, pp], Power @@ # &];
     If[m > j, Set[{a[c], j}, {k, m}]; c++];
     If[k > nn/2, Break[]], {n, Infinity}];
    {1}~Join~Array[a, c - 2, 2] (* Michael De Vlieger, Mar 11 2023 *)

A343881 Table read by antidiagonals upward: T(n,k) is the least integer m > k such that k^x * m^y = c^n for some positive integers c, x, and y where x < n and y < n; n >= 2, k >= 1.

Original entry on oeis.org

4, 8, 8, 4, 4, 12, 32, 4, 9, 9, 4, 4, 9, 16, 20, 128, 4, 9, 8, 25, 24, 4, 4, 9, 8, 20, 36, 28, 8, 4, 9, 8, 25, 24, 49, 18, 4, 4, 9, 8, 20, 36, 28, 27, 16, 2048, 4, 9, 8, 25, 24, 49, 18, 24, 40, 4, 4, 9, 8, 20, 36, 28, 16, 12, 80, 44, 8192, 4, 9, 8, 25, 24, 49
Offset: 2

Views

Author

Peter Kagey, May 02 2021

Keywords

Comments

For prime p, the p-th row consists of distinct integers.
Conjecture: T(p,k) = A064549(k) for fixed k > 1 and sufficiently large p.

Examples

			Table begins:
  n\k|    1  2   3   4   5   6   7   8   9   10
-----+-----------------------------------------
   2 |    4, 8, 12,  9, 20, 24, 28, 18, 16,  40
   3 |    8, 4,  9, 16, 25, 36, 49, 27, 24,  80
   4 |    4, 4,  9,  8, 20, 24, 28, 18, 12,  40
   5 |   32, 4,  9,  8, 25, 36, 49, 16, 27, 100
   6 |    4, 4,  9,  8, 20, 24, 28,  9, 16,  40
   7 |  128, 4,  9,  8, 25, 36, 49, 16, 27, 100
   8 |    4, 4,  9,  8, 20, 24, 28, 16, 12,  40
   9 |    8, 4,  9,  8, 25, 36, 49, 16, 24,  80
  10 |    4, 4,  9,  8, 20, 24, 28, 16, 16,  40
  11 | 2048, 4,  9,  8, 25, 36, 49, 16, 27, 100
T(2, 3) = 12 with  3   * 12   =  6^2.
T(3,10) = 80 with 10^2 * 80   = 20^3.
T(4, 5) = 20 with  5^2 * 20^2 = 10^4.
T(5, 1) = 32 with  1   * 32   =  2^5.
T(6, 8) =  9 with  8^2 *  9^3 =  6^6.
		

Crossrefs

Rows: A072905 (n=2), A277781 (n=3).

Formula

T(n,1) = 2^A020639(n).

A349574 Lexicographically earliest infinite sequence such that a(i) = a(j) => A344696(i) = A344696(j) and A344697(i) = A344697(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 2, 1, 1, 1, 5, 1, 4, 1, 2, 1, 1, 1, 3, 6, 1, 7, 2, 1, 1, 1, 8, 1, 1, 1, 9, 1, 1, 1, 3, 1, 1, 1, 2, 4, 1, 1, 5, 10, 6, 1, 2, 1, 7, 1, 3, 1, 1, 1, 2, 1, 1, 4, 11, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 6, 2, 1, 1, 1, 5, 13, 1, 1, 2, 1, 1, 1, 3, 1, 4, 1, 2, 1, 1, 1, 8, 1, 10, 4, 14, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2021

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A344696(n), A344697(n)].
For all i, j, A003557(i) = A003557(j) => a(i) = a(j); in other words, this sequence is a function of A003557. This follows because A344696(n) = A344696(A057521(n)), A344697(n) = A344696(A057521(n)), and A057521(n) = A064549(A003557(n)).
Apparently, A081770 gives the positions of 2's, which occur on those n where A344696(n) = 7 and A344697(n) = 6.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    Aux349574(n) = { my(s=sigma(n),u=A001615(n),g=gcd(u,s)); [s/g, u/g]; };
    v349574 = rgs_transform(vector(up_to, n, Aux349574(n)));
    A349574(n) = v349574[n];

Formula

For all n >= 1, a(n) = a(A057521(n)). [See comments]

A351434 If n = Product (p_j^k_j) then a(n) = Product ((p_j - 1)^(k_j + 1)).

Original entry on oeis.org

1, 1, 4, 1, 16, 4, 36, 1, 8, 16, 100, 4, 144, 36, 64, 1, 256, 8, 324, 16, 144, 100, 484, 4, 64, 144, 16, 36, 784, 64, 900, 1, 400, 256, 576, 8, 1296, 324, 576, 16, 1600, 144, 1764, 100, 128, 484, 2116, 4, 216, 64, 1024, 144, 2704, 16, 1600, 36, 1296, 784, 3364, 64, 3600, 900, 288, 1, 2304
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 11 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> mul((i[1]-1)^(i[2]+1), i=ifactors(n)[2]):
    seq(a(n), n=1..65);  # Alois P. Heinz, Feb 11 2022
  • Mathematica
    f[p_, e_] := (p - 1)^(e + 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Table[a[n], {n, 1, 65}]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1]--; f[k,2]++); factorback(f); \\ Michel Marcus, Feb 11 2022

Formula

a(n) = A003958(n) * |A023900(n)|.
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} (1 - (3*p^2 - 4*p + 2)/(p*(p^3 - p + 1))) = 0.1161464566... . - Amiram Eldar, Nov 19 2022
Previous Showing 41-50 of 51 results. Next