A064902 Semiprimes p1*p2 such that p2 mod p1 = 4, with p2 > p1.
77, 95, 145, 221, 295, 371, 395, 407, 437, 445, 469, 545, 559, 649, 695, 745, 763, 895, 959, 995, 1057, 1133, 1145, 1159, 1195, 1253, 1345, 1351, 1513, 1517, 1679, 1745, 1795, 1841, 1895, 1939, 1945, 2021, 2045, 2095, 2101, 2195, 2245, 2249, 2395, 2429
Offset: 1
Keywords
Links
- John Cerkan, Table of n, a(n) for n = 1..10000
Programs
-
PARI
isok(n) = my(f = factor(n)); (#f~ == 2) && (vecmax(f[,2]) < 2) && ((f[2,1] % f[1,1]) == 4); \\ Michel Marcus, Apr 16 2018
-
Python
from sympy import factorint def is_A064902(n): f = factorint(n) return (sum([f[i] for i in f]) == 2) and (max(f) % min(f) == 4) def first_A064902(n): x = 1 an = [] while len(an) < n: if is_A064902(x):an.append(x) n += 2 return an # John Cerkan, Apr 14 2018
Extensions
Offset changed by John Cerkan, Apr 12 2018