cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A090697 Numbers n such that n^2/2 - 1 is a prime.

Original entry on oeis.org

4, 6, 8, 12, 14, 16, 20, 22, 26, 30, 34, 36, 42, 44, 48, 50, 56, 68, 72, 76, 78, 82, 84, 86, 90, 92, 98, 100, 104, 112, 118, 124, 126, 128, 138, 146, 152, 160, 162, 170, 174, 182, 184, 190, 196, 204, 216, 218, 224, 226, 230, 236, 250, 252, 254, 264, 268, 274, 280
Offset: 1

Views

Author

Giovanni Teofilatto, Dec 20 2003

Keywords

Comments

A066436 gives resulting primes p such that 2p+2 is square. - Ray Chandler, Dec 25 2003

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

Programs

  • Mathematica
    Select[Range[2,300,2],PrimeQ[#^2/2-1]&] (* Harvey P. Dale, Apr 05 2014 *)
  • PARI
    isok(n) = !(n % 2) && isprime(n^2/2 - 1); \\ Michel Marcus, Jul 23 2016

Formula

a(n) = 2*A066049(n) = A110558(n)/2. - Ray Chandler, Dec 25 2003

Extensions

Corrected and extended by Ray Chandler, Dec 25 2003

A110558 Numbers n such that (n^2-8)/8 is prime.

Original entry on oeis.org

8, 12, 16, 24, 28, 32, 40, 44, 52, 60, 68, 72, 84, 88, 96, 100, 112, 136, 144, 152, 156, 164, 168, 172, 180, 184, 196, 200, 208, 224, 236, 248, 252, 256, 276, 292, 304, 320, 324, 340, 348, 364, 368, 380, 392, 408, 432, 436, 448, 452, 460, 472, 500, 504, 508
Offset: 1

Views

Author

Pierre CAMI, Sep 12 2005

Keywords

Comments

These numbers need to be of the form 4*j then (16*j^2-8)/8 = 2*j^2-1.
A066436 gives resulting primes p such that 8p+8 is square. - Ray Chandler, Sep 15 2005

Crossrefs

Programs

Formula

a(n) = 2*A090697(n) = 4*A066049(n). - Ray Chandler, Sep 15 2005

Extensions

Extended by Ray Chandler, Sep 15 2005

A143830 Primes of the form 12*n^2-1.

Original entry on oeis.org

11, 47, 107, 191, 431, 587, 971, 1451, 2027, 2351, 2699, 3467, 4799, 5807, 6911, 7499, 8111, 8747, 10091, 10799, 14699, 15551, 16427, 17327, 18251, 25391, 27647, 36299, 41771, 44651, 55487, 57131, 62207, 67499, 71147, 74891, 80687, 92927, 99371
Offset: 1

Views

Author

Artur Jasinski, Sep 02 2008

Keywords

Comments

Equals A089682 without the 2. [Sketch of proof: the primes 3*n^2-1 are odd if 2 is left out, so 3*n^2 is even, so n^2 is even, so n is even = 2*k. 3*(2*k)^2-1 = 12*k^2-1.] [From R. J. Mathar, Sep 04 2008]

Crossrefs

Programs

  • Mathematica
    p = 12; a = {}; Do[k = p x^2 - 1; If[PrimeQ[k], AppendTo[a, k]], {x, 1, 1000}]; a

A143835 a(n) = Number of x <= 10^n such that 2x^2-1 is prime.

Original entry on oeis.org

7, 45, 303, 2202, 17185, 141444, 1200975, 10448345, 92435171, 828797351, 7511268020, 68680339342
Offset: 1

Views

Author

Artur Jasinski, Sep 02 2008, Sep 04 2008

Keywords

Examples

			a(1) = 7 because are 7 different x ={2, 3, 4, 6, 7, 8, 10} <= 10^1 where 2x^2-1 is prime = {7, 17, 31, 71, 97, 127, 199}.
		

Crossrefs

Programs

  • Mathematica
    l = 0; p = 2; a = {}; Do[k = p x^2 - 1; If[PrimeQ[k], l = l + 1]; If[N[Log[x]/Log[10]] == Round[N[Log[x]/Log[10]]], Print[l]; AppendTo[a, l]], {x, 1, 10000000}]; a (*Artur Jasinski*)

Extensions

Added link and extended to agree with website. - Ray Chandler, Jun 30 2015

A143831 Numbers n such that 12n^2 - 1 is prime.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 11, 13, 14, 15, 17, 20, 22, 24, 25, 26, 27, 29, 30, 35, 36, 37, 38, 39, 46, 48, 55, 59, 61, 68, 69, 72, 75, 77, 79, 82, 88, 91, 93, 94, 102, 105, 107, 108, 115, 116, 117, 118, 121, 124, 130, 134, 136, 137, 140, 149, 152, 154, 157, 158, 159, 162, 167
Offset: 1

Views

Author

Artur Jasinski, Sep 02 2008

Keywords

Crossrefs

Programs

  • Mathematica
    p = 12; a = {}; Do[k = p x^2 - 1; If[PrimeQ[k], AppendTo[a, x]], {x, 1, 1000}]; a
  • PARI
    is(n)=isprime(12*n^2-1) \\ Charles R Greathouse IV, Feb 20 2017

A143833 Numbers n such that 14n^2 - 1 is prime.

Original entry on oeis.org

1, 4, 5, 6, 10, 11, 16, 21, 26, 34, 36, 44, 45, 49, 54, 55, 59, 65, 69, 71, 76, 80, 85, 91, 95, 96, 100, 104, 106, 110, 114, 115, 120, 121, 125, 135, 139, 166, 169, 176, 180, 190, 195, 201, 204, 206, 214, 226, 230, 231, 234, 241, 254, 256, 264, 265, 269, 270, 275, 280
Offset: 1

Views

Author

Artur Jasinski, Sep 02 2008

Keywords

Crossrefs

Programs

  • Mathematica
    p = 14; a = {}; Do[k = p x^2 - 1; If[PrimeQ[k], AppendTo[a, x]], {x, 1, 1000}]; a
    Select[Range[300],PrimeQ[14#^2-1]&] (* Harvey P. Dale, Aug 29 2011 *)
  • PARI
    is(n)=isprime(14*n^2-1) \\ Charles R Greathouse IV, Feb 20 2017

A240235 Least number k such that k*n^k - 1 is prime. a(n) = 0 if no such number exists.

Original entry on oeis.org

3, 2, 1, 1, 8, 1, 2, 1, 10, 2, 2, 1, 2, 1, 2, 167, 2, 1, 12, 1, 2, 2, 29028, 1, 2, 3, 10, 2, 26850, 1, 8, 1, 42, 2, 6, 2, 24, 1, 2, 3, 2, 1, 2, 1, 2, 2, 140, 1, 2, 2, 22, 2, 8, 1, 2064, 2, 468, 6, 2, 1, 362, 1, 2, 2, 6, 3, 26, 1, 2, 3, 20, 1, 2, 1, 28, 2, 38, 5, 3024, 1, 2, 81, 858, 1
Offset: 1

Views

Author

Derek Orr, Apr 02 2014

Keywords

Comments

a(n) = 1 iff n-1 is prime.
a(145) is either 0 or > 275000. - Robert G. Wilson v, Jan 23 2017

Examples

			1*1^1 - 1 = 0 is not prime. 2*1^2 - 1 = 1 is not prime. 3*1^3 - 1 = 2 is prime. Thus, a(1) = 3.
		

Crossrefs

Programs

  • PARI
    a(n)=k=1;while(!ispseudoprime(k*n^k-1),k++);return(k); n=1;while(n<100,print(a(n));n+=1)

Extensions

a(23) and a(29) given using link. - Derek Orr, Aug 16 2014

A119591 Least k such that 2*n^k - 1 is prime.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 2, 2, 1, 10, 1, 1, 6, 1, 2, 6, 1, 2, 136, 1, 1, 6, 6, 1, 6, 1, 1, 2, 2, 1, 2, 1, 2, 4, 1, 2, 4, 4, 1, 2, 1, 1, 44, 1, 1, 2, 1, 3, 2, 5, 3, 2, 2, 1, 4, 1, 768, 4, 1, 1, 52, 34, 2, 132, 1, 1, 14, 7, 1, 2, 2, 1, 8, 1, 2, 10, 1, 24, 60, 1, 1, 2, 3, 5, 2, 1, 1, 2, 1, 1
Offset: 2

Views

Author

Pierre CAMI, Jun 01 2006

Keywords

Comments

From Eric Chen, Jun 01 2015: (Start)
Conjecture: a(n) is defined for all n.
a(303) > 10000, a(304)..a(360) = {1, 2, 11, 1, 990, 1, 1, 2, 2, 4, 74, 5, 1, 10, 6, 6, 4, 1, 1, 2, 1, 9, 12, 1, 80, 2, 1, 1, 2, 14, 3, 2, 3, 1, 12, 1, 60, 36, 1, 8, 4, 34, 1, 522, 3, 15, 14, 1, 6, 2, 3, 1, 4, 5, 4, 10, 1}.
a(n) = 1 if and only if n is in A006254. (End)
From Eric Chen, Sep 16 2021: (Start)
Now a(303) is known to be 40174, also other terms > 10000: a(383) = 20956, a(515) = 58466, a(522) = 62288, a(578) = 129468, a(581) > 400000, a(590) = 15526, a(647) = 21576, a(662) = 16590, a(698) = 127558, a(704) = 62034, see the a-file and the references.
a(n) = 2 if and only if n is in A066049 but not in A006254.
a(n) = 3 if and only if n is in A214289 but not in A006254 or A066049. (End)

Crossrefs

Numbers r such that 2*k^r-1 is prime: A090748 (k=2), A003307 (k=3), A146768 (k=4), A120375 (k=5), A057472 (k=6), A002959 (k=7), ... (k=8), ... (k=9), A002957 (k=10), A120378 (k=11), ... (k=12), A174153 (k=13), A273517 (k=14), ... (k=15), ... (k=16), A193177 (k=17), A002958 (k=25).

Programs

  • Mathematica
    f[n_] := Block[{k = 0}, While[ ! PrimeQ[2*n^k - 1], k++ ]; k ]; Table[f[n], {n, 2, 106}] (* Ray Chandler, Jun 08 2006 *)
  • PARI
    a(n) = for(k=1, 2^24, if(ispseudoprime(2*n^k-1), return(k))) \\ Eric Chen, Jun 01 2015

Formula

From Eric Chen, Sep 16 2021: (Start)
a(6*n) = A098873(n).
a(2^n) = A279095(n).
a(A006254(n)) = 1.
a(A066049(n)) <= 2.
a(A214289(n)) <= 3. (End)

Extensions

Corrected and extended by Ray Chandler, Jun 08 2006

A143832 Primes of the form 14 n^2-1.

Original entry on oeis.org

13, 223, 349, 503, 1399, 1693, 3583, 6173, 9463, 16183, 18143, 27103, 28349, 33613, 40823, 42349, 48733, 59149, 66653, 70573, 80863, 89599, 101149, 115933, 126349, 129023, 139999, 151423, 157303, 169399, 181943, 185149, 201599, 204973, 218749
Offset: 1

Views

Author

Artur Jasinski, Sep 02 2008

Keywords

Comments

Primes of the form k n^2-1 k = 2 A066436 these n are A066049 k = 4 only one prime 3 when n = 1 k = 6 A090686 these n are A143826 k = 8 A090684 these n are A143827 k =10 A143828 these n are A143829 k =12 A143830 these n are A143831 k =14 A143832 these n are A143833 k =16 lack of primes

Crossrefs

Programs

  • Mathematica
    p = 14; a = {}; Do[k = p x^2 - 1; If[PrimeQ[k], AppendTo[a, k]], {x, 1, 1000}]; a
    Select[14*Range[200]^2-1,PrimeQ] (* Harvey P. Dale, Jul 29 2024 *)

A160697 Record values in A160696.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 10, 11, 13, 15, 17, 18, 21, 22, 24, 25, 28, 34, 36, 38, 39, 41, 42, 43, 45, 46, 49, 50, 52, 56, 59, 62, 63, 64, 69, 73, 76, 80, 81, 85, 87, 91, 92, 95, 98, 102, 108, 109, 112, 113, 115, 118, 125, 126, 127, 132, 134, 137, 140, 141, 143, 153, 154, 155
Offset: 1

Views

Author

Reinhard Zumkeller, May 24 2009

Keywords

Comments

a(n)=A160696(A160698(n)) and A160696(m)A160698(n);
for n>1: a(n)=A066049(n-1) and A066436(n-1)+1=2*a(n)^2.
Previous Showing 11-20 of 30 results. Next