cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A384888 Number of integer partitions of n with all equal lengths of maximal anti-runs (decreasing by more than 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 10, 13, 17, 20, 24, 32, 36, 44, 55, 64, 75, 92, 105, 125, 147, 169, 195, 231, 263, 303, 351, 401, 458, 532, 600, 686, 784, 889, 1010, 1152, 1296, 1468, 1662, 1875, 2108, 2384, 2669, 3001, 3373, 3775, 4222, 4734, 5278, 5896, 6576, 7322
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2025

Keywords

Examples

			The partition y = (10,6,6,4,3,1) has maximal anti-runs ((10,6),(6,4),(3,1)), with lengths (2,2,2), so y is counted under a(30).
The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (211)   (221)    (51)      (61)       (62)
                    (1111)  (2111)   (222)     (322)      (71)
                            (11111)  (321)     (2221)     (332)
                                     (2211)    (3211)     (2222)
                                     (21111)   (22111)    (3221)
                                     (111111)  (211111)   (22211)
                                               (1111111)  (32111)
                                                          (221111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The strict case is new, distinct A384880.
For distinct instead of equal lengths we have A384885.
For runs instead of anti-runs we have A384887, distinct A384884.
For subsets instead of strict partitions we have A384889, distinct A384177, runs A243815.
A000041 counts integer partitions, strict A000009.
A007690 counts partitions with no singletons, complement A183558.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A355394 counts partitions without a neighborless part, singleton case A355393.
A356236 counts partitions with a neighborless part, singleton case A356235.
A356606 counts strict partitions without a neighborless part, complement A356607.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SameQ@@Length/@Split[#,#2<#1-1&]&]],{n,0,15}]

A066310 Numbers k such that k < (product of digits of k) * (sum of digits of k).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95
Offset: 1

Views

Author

Labos Elemer and Klaus Brockhaus, Dec 13 2001

Keywords

Examples

			14 < (1*4)*(1+4) = 20, so 14 is a term of this sequence.
For n=199, (1+9+9)*1*9*9 = 1539 > 199, so 199 is here.
		

Crossrefs

Programs

  • ARIBAS
    function a066311(a,b: integer); var n,k,j,p,d: integer; s: string; begin for n := a to b do s := itoa(n); k := 0; p := 1; for j := 0 to length(s) - 1 do d := atoi(s[j..j]); k := k + d; p := p*d; end; if n < p*k then write(n,","); end; end; end; a066311(0,120);
    
  • Mathematica
    asum[x_] := Apply[Plus, IntegerDigits[x]] apro[x_] := Apply[Times, IntegerDigits[x]] sz[x_] := asu[x]*apro[x] Do[s=sz[n]; If[Greater[s, n], Print[n]], {n, 1, 200}]
  • PARI
    isok(m) = my(d=digits(m)); m < vecprod(d)*vecsum(d); \\ Michel Marcus, Mar 23 2020

A385574 Number of integer partitions of n with the same number of adjacent equal parts as adjacent unequal parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 4, 5, 6, 10, 11, 13, 17, 20, 30, 36, 44, 55, 70, 86, 98, 128, 156, 190, 235, 288, 351, 409, 499, 603, 722, 863, 1025, 1227, 1461, 1757, 2061, 2444, 2892, 3406, 3996, 4708, 5497, 6430, 7595, 8835, 10294, 12027, 13971, 16252, 18887, 21878
Offset: 0

Views

Author

Gus Wiseman, Jul 04 2025

Keywords

Comments

These are also integer partitions of n with the same number of distinct parts as maximal anti-runs of parts.

Examples

			The partition (5,3,2,1,1,1,1) has 4 runs ((5),(3),(2),(1,1,1,1)) and 4 anti-runs ((5,3,2,1),(1),(1),(1)) so is counted under a(14).
The a(1) = 1 through a(10) = 10 reversed partitions (A = 10):
  (1)  (2)  (3)  (4)    (5)    (6)    (7)    (8)      (9)      (A)
                 (112)  (113)  (114)  (115)  (116)    (117)    (118)
                        (122)         (133)  (224)    (144)    (226)
                                      (223)  (233)    (225)    (244)
                                             (11123)  (11124)  (334)
                                                      (11223)  (11125)
                                                               (11134)
                                                               (11224)
                                                               (11233)
                                                               (12223)
		

Crossrefs

The RHS is counted by A116608, rank statistic A297155.
The LHS is counted by A133121, rank statistic A046660.
For related inequalities see A212165, A212168, A361204.
For subsets instead of partitions see A217615, A385572, A385575.
These partitions are ranked by A385576.
A000041 counts integer partitions, strict A000009.
A007690 counts partitions with no singletons, complement A183558.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.
A034839 counts subsets by number maximal runs, for partitions A384881, strict A116674.
A047993 counts partitions with max part = length (A106529).
A098859 counts Wilf partitions (complement A336866), compositions A242882.
A268193 counts partitions by maximal anti-runs, strict A384905, subsets A384893.
A355394 counts partitions with neighbors, complement A356236.

Programs

  • Mathematica
    Table[Length[Select[Reverse/@IntegerPartitions[n],Length[Union[#]]==Length[Split[#,#2!=#1&]]&]],{n,0,30}]
  • PARI
    lista(n)=Vec(polcoef((prod(i=1,n,1+x^i/(t*(1-t*x^i))+O(x*x^n))-1)*t+1,0,t)) \\ Christian Sievers, Jul 18 2025

Formula

For a partition p, let s(p) be its sum, e(p) the number of equal adjacent pairs, and d(p) the number of distinct adjacent pairs. Then Sum_{p partition} x^s(p) * t^(e(p)-d(p)) = (Product_{i>=1} (1 + x^i/(t*(1-t*x^i))) - 1) * t + 1, so a(n) is the coefficient of x^n*t^0 of this expression. - Christian Sievers, Jul 18 2025

A385814 Triangle read by rows where T(n,k) is the number of integer partitions of n with k maximal proper anti-runs (sequences decreasing by more than 1).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 0, 2, 2, 1, 1, 1, 0, 3, 2, 3, 1, 1, 1, 0, 3, 4, 2, 3, 1, 1, 1, 0, 4, 5, 4, 3, 3, 1, 1, 1, 0, 5, 5, 6, 5, 3, 3, 1, 1, 1, 0, 6, 8, 7, 6, 6, 3, 3, 1, 1, 1, 0, 7, 9, 10, 8, 7, 6, 3, 3, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2025

Keywords

Examples

			The partition (8,5,4,2,1) has maximal proper anti-runs ((8,5),(4,2),(1)) so is counted under T(20,3).
The partition (8,5,3,2,2) has maximal proper anti-runs ((8,5,3),(2),(2)) so is also counted under T(20,3).
Row n = 8 counts the following partitions:
  .  8   611  5111  41111  32111   221111  2111111  11111111
     71  521  4211  3221   311111
     62  44   332   2222   22211
     53  431  3311
         422
Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  2  1  1  1
  0  2  2  1  1  1
  0  3  2  3  1  1  1
  0  3  4  2  3  1  1  1
  0  4  5  4  3  3  1  1  1
  0  5  5  6  5  3  3  1  1  1
  0  6  8  7  6  6  3  3  1  1  1
  0  7  9 10  8  7  6  3  3  1  1  1
  0  9 11 13 12  9  8  6  3  3  1  1  1
  0 10 14 16 15 13 10  8  6  3  3  1  1  1
  0 12 19 18 21 17 14 11  8  6  3  3  1  1  1
  0 14 21 26 23 24 19 15 11  8  6  3  3  1  1  1
  0 17 26 31 33 28 26 20 16 11  8  6  3  3  1  1  1
  0 19 32 37 40 39 31 28 21 16 11  8  6  3  3  1  1  1
  0 23 38 47 50 47 45 34 29 22 16 11  8  6  3  3  1  1  1
  0 26 45 57 61 61 54 48 36 30 22 16 11  8  6  3  3  1  1  1
  0 31 53 71 75 76 70 60 51 37 31 22 16 11  8  6  3  3  1  1  1
		

Crossrefs

Row sums are A000041, strict A000009.
Column k = 1 is A003114.
For anti-runs instead of proper anti-runs we have A268193.
The corresponding rank statistic is A356228.
For proper runs instead of proper anti-runs we have A384881.
For subsets instead of partitions we have A384893, runs A034839.
The strict case is A384905.
For runs instead of proper anti-runs we have A385815.
A007690 counts partitions with no singletons (ranks A001694), complement A183558.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.
A047993 counts partitions with max part = length, ranks A106529.
A098859 counts Wilf partitions, complement A336866 (ranks A325992).
A116608 counts partitions by distinct parts.
A116931 counts sparse partitions, ranks A319630.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Split[#,#1>#2+1&]]==k&]],{n,0,10},{k,0,n}]

A385815 Triangle read by rows where T(n,k) is the number of integer partitions of n with k maximal runs of consecutive elements decreasing by 0 or 1.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 0, 3, 0, 0, 0, 4, 1, 0, 0, 0, 5, 2, 0, 0, 0, 0, 7, 4, 0, 0, 0, 0, 0, 8, 7, 0, 0, 0, 0, 0, 0, 10, 12, 0, 0, 0, 0, 0, 0, 0, 13, 16, 1, 0, 0, 0, 0, 0, 0, 0, 15, 25, 2, 0, 0, 0, 0, 0, 0, 0, 0, 18, 34, 4, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2025

Keywords

Examples

			The partition (8,5,4,2,1) has maximal runs ((8),(5,4),(2,1)) so is counted under T(20,3).
The partition (8,5,3,2,2) has maximal runs ((8),(5),(3,2,2)) so is also counted under T(20,3).
Row n = 9 counts the following partitions:
  (9)                  (6,3)            (5,3,1)
  (5,4)                (7,2)
  (3,3,3)              (8,1)
  (4,3,2)              (4,4,1)
  (3,2,2,2)            (5,2,2)
  (3,3,2,1)            (6,2,1)
  (2,2,2,2,1)          (7,1,1)
  (3,2,2,1,1)          (4,2,2,1)
  (2,2,2,1,1,1)        (4,3,1,1)
  (3,2,1,1,1,1)        (5,2,1,1)
  (2,2,1,1,1,1,1)      (6,1,1,1)
  (2,1,1,1,1,1,1,1)    (3,3,1,1,1)
  (1,1,1,1,1,1,1,1,1)  (4,2,1,1,1)
                       (5,1,1,1,1)
                       (4,1,1,1,1,1)
                       (3,1,1,1,1,1,1)
Triangle begins:
   1
   0   1
   0   2   0
   0   3   0   0
   0   4   1   0   0
   0   5   2   0   0   0
   0   7   4   0   0   0   0
   0   8   7   0   0   0   0   0
   0  10  12   0   0   0   0   0   0
   0  13  16   1   0   0   0   0   0   0
   0  15  25   2   0   0   0   0   0   0   0
   0  18  34   4   0   0   0   0   0   0   0   0
   0  23  46   8   0   0   0   0   0   0   0   0   0
   0  26  62  13   0   0   0   0   0   0   0   0   0   0
   0  31  82  22   0   0   0   0   0   0   0   0   0   0   0
		

Crossrefs

Row sums are A000041, strict A000009.
Column k = 1 is A034296 (flat or gapless partitions, ranks A066311 or A073491).
For subsets instead of partitions we have A034839, anti-runs A384893.
The strict case appears to be A116674.
For anti-runs instead of runs we have A268193.
The corresponding rank statistic is A287170.
For proper runs instead of runs we have A384881.
For proper anti-runs instead of runs we have A385814.
A007690 counts partitions with no singletons (ranks A001694), complement A183558.
A047993 counts partitions with max part = length, rank A106529.
A098859 counts Wilf partitions, complement A336866 (ranks A325992).
A116608 counts partitions by distinct parts.
A116931 counts sparse partitions, ranks A319630.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Split[#,#1<=#2+1&]]==k&]],{n,0,20},{k,0,n}]

A356956 Numbers k such that the k-th composition in standard order is a gapless interval (in increasing order).

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 16, 20, 32, 52, 64, 72, 128, 256, 272, 328, 512, 840, 1024, 1056, 2048, 2320, 4096, 4160, 8192, 10512, 16384, 16512, 17440, 26896, 32768, 65536, 65792, 131072, 135232, 148512, 262144, 262656, 524288, 672800, 1048576, 1049600, 1065088, 1721376
Offset: 1

Views

Author

Gus Wiseman, Sep 24 2022

Keywords

Comments

An interval such as {3,4,5} is a set of positive integers with all differences of adjacent elements equal to 1.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and corresponding intervals begin:
        0: ()
        1: (1)
        2: (2)
        4: (3)
        6: (1,2)
        8: (4)
       16: (5)
       20: (2,3)
       32: (6)
       52: (1,2,3)
       64: (7)
       72: (3,4)
      128: (8)
      256: (9)
      272: (4,5)
      328: (2,3,4)
      512: (10)
      840: (1,2,3,4)
		

Crossrefs

See link for sequences related to standard compositions.
These compositions are counted by A001227.
An unordered version is A073485, non-strict A073491 (complement A073492).
The initial version is A164894, non-strict A356843 (unordered A356845).
The non-strict version is A356841, initial A333217, counted by A107428.
A066311 lists gapless numbers.
A356230 ranks gapless factorization lengths, firsts A356603.
A356233 counts factorizations into gapless numbers.
A356844 ranks compositions with at least one 1.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    chQ[y_]:=Length[y]<=1||Union[Differences[y]]=={1};
    Select[Range[0,1000],chQ[stc[#]]&]

A357708 Numbers k such that the k-th composition in standard order has sum equal to twice its maximum part.

Original entry on oeis.org

3, 10, 11, 13, 14, 36, 37, 38, 39, 41, 44, 50, 51, 52, 57, 60, 136, 137, 138, 139, 140, 141, 142, 143, 145, 152, 162, 163, 168, 177, 184, 196, 197, 198, 199, 200, 209, 216, 226, 227, 232, 241, 248, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539
Offset: 1

Views

Author

Gus Wiseman, Oct 14 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and corresponding compositions begin:
    3: (1,1)
   10: (2,2)
   11: (2,1,1)
   13: (1,2,1)
   14: (1,1,2)
   36: (3,3)
   37: (3,2,1)
   38: (3,1,2)
   39: (3,1,1,1)
   41: (2,3,1)
   44: (2,1,3)
   50: (1,3,2)
   51: (1,3,1,1)
		

Crossrefs

See link for sequences related to standard compositions.
A066311 lists gapless numbers.
A124767 counts runs in standard compositions.
A333766 gives maximal part of standard compositions, minimal A333768.
A356844 ranks compositions with at least one 1.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],Max@@stc[#]==Total[stc[#]]/2&]

A385576 Numbers whose prime indices have the same number of distinct elements as maximal anti-runs.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 37, 41, 43, 44, 45, 47, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 89, 92, 97, 98, 99, 101, 103, 107, 109, 113, 116, 117, 120, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153, 157, 163
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are also numbers with the same number of adjacent equal prime indices as adjacent unequal prime indices.

Examples

			The prime indices of 2640 are {1,1,1,1,2,3,5}, with 4 distinct parts {1,2,3,5} and 4 maximal anti-runs ((1),(1),(1),(2,3,5)), so 2640 is in the sequence.
The terms together with their prime indices begin:
   1: {}
   2: {1}
   3: {2}
   5: {3}
   7: {4}
  11: {5}
  12: {1,1,2}
  13: {6}
  17: {7}
  18: {1,2,2}
  19: {8}
  20: {1,1,3}
  23: {9}
  28: {1,1,4}
  29: {10}
  31: {11}
  37: {12}
  41: {13}
  43: {14}
  44: {1,1,5}
  45: {2,2,3}
  47: {15}
		

Crossrefs

The LHS is the rank statistic A001221, triangle counted by A116608.
The RHS is the rank statistic A375136, triangle counted by A133121.
These partitions are counted by A385574.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.
A047993 counts partitions with max part = length, ranks A106529.
A356235 counts partitions with a neighborless singleton, ranks A356237.
A384877 gives lengths of maximal anti-runs of binary indices, firsts A384878.
A384893 counts subsets by maximal anti-runs, for partitions A268193, strict A384905.
A385572 counts subsets with the same number of runs as anti-runs, ranks A385575.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],#==1||PrimeNu[#]==Length[Split[prix[#],UnsameQ]]&]

Formula

A001221(a(n)) = A375136(a(n)).
Previous Showing 11-18 of 18 results.