cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 77 results. Next

A058838 a(n) = 1 + sum of the anti-divisors of n.

Original entry on oeis.org

1, 1, 3, 4, 6, 5, 11, 9, 9, 15, 13, 14, 20, 17, 19, 15, 29, 29, 19, 25, 23, 37, 35, 24, 40, 25, 43, 47, 25, 37, 43, 59, 49, 31, 53, 33, 51, 71, 53, 56, 42, 67, 57, 41, 87, 59, 61, 57, 73, 81, 43, 95, 89, 53, 75, 57, 75, 97, 91, 108, 58, 79, 113, 47, 85
Offset: 1

Views

Author

Jon Perry, Dec 28 2001

Keywords

Comments

See A066272 for definition of anti-divisor.

Examples

			Consider n = 18: 2n-1, 2n, 2n+1 are 35, 36, 37 with odd divisors > 1 {5,7,35}, {3,9}, {37} respectively and quotients {7, 5, 1}, {12, 4}, {1}; so the anti-divisors of 18 are 4, 5, 7, 12. Therefore a(18) = 1 + 28 = 29.
		

Crossrefs

Formula

a(n) = A066417(n) + 1.

A178029 Numbers whose sum of divisors equals the sum of their anti-divisors.

Original entry on oeis.org

11, 22, 33, 65, 82, 117, 218, 483, 508, 537, 6430, 21541, 117818, 3589646, 7231219, 8515767, 13050345, 47245905, 50414595, 104335023, 217728002, 1217532421, 1573368218, 1875543429, 2269058065, 11902221245, 12196454655, 12658724029
Offset: 1

Views

Author

Keywords

Examples

			6430 is in the sequence because the sum of divisors is 1+2+5+10+643+1286+3215+6430 = 11592
which equals the sum of anti-divisors 3+4+7+9+11+20+77+167+1169+1429+1837+2572+4287 = 11592.
21541 is in the sequence because the sum of divisors is 1+13+1657+21541 = 23212
and equals the sum of anti-divisors 2+3+9+26+67+643+3314+4787+14361 = 23212.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local j,k; k:=0; j:=q; while j mod 2<>1 do k:=k+1; j:=j/2; od; if sigma(q)=sigma(2*q+1)+sigma(2*q-1)+sigma(q/2^k)*2^(k+1)-6*q-2 then q; fi; end: seq(P(i),i=3..10^5);
    # alternative Maple implementation:
    antidivisors := proc(n) local a,k; a := {} ; for k from 2 to n-1 do if abs((n mod k)- k/2) < 1 then a := a union {k} ; end if; end do: a ; end proc:
    A066417 := proc(n) add(d,d=antidivisors(n)) ; end proc:
    isA178029 := proc(n) numtheory[sigma](n) = A066417(n) ; end proc:
    for n from 1 do if isA178029(n) then printf("%d,\n",n) ; end if; end do:
    # R. J. Mathar, May 24 2010
  • Mathematica
    antidivisors[n_] := Select[Range[2, n-1], Abs[Mod[n, #] - #/2] < 1&];
    For[k = 1, k <= 10^5, k++, If[DivisorSigma[1, k] == Total[antidivisors[k]], Print[k]]] (* Jean-François Alcover, Jun 14 2023 *)
  • Python
    from sympy import divisors
    [n for n in range(1,10**5) if sum([d for d in range(2,n) if (n % d) and (2*n) % d in [d-1,0,1]]) == sum(divisors(n))] # Chai Wah Wu, Aug 07 2014

Formula

{n: A066417(n) = A000203(n)}. - R. J. Mathar, May 24 2010

Extensions

a(13)-a(28) from Donovan Johnson, Jun 12 2010

A091507 Product of the anti-divisors of n.

Original entry on oeis.org

2, 3, 6, 4, 30, 15, 12, 84, 42, 40, 270, 108, 120, 33, 2310, 1680, 78, 312, 168, 8100, 4050, 112, 7140, 204, 11880, 25080, 114, 960, 7938, 257985, 17160, 276, 19320, 192, 11250, 1732500, 24024, 11664, 1458, 114240, 14790, 696, 5896800, 33852, 17670
Offset: 3

Views

Author

Lior Manor, Mar 03 2004

Keywords

Comments

See A066272 for definition of anti-divisor.

Examples

			For example, n = 18: 2n-1, 2n, 2n+1 are 35, 36, 37 with odd divisors > 1 {3,7,35}, {3,9}, {37} and quotients 7, 5, 1, 12, 4, 1, so the anti-divisors of 12 are 4, 5, 7, 12. Therefore a(18) = 4*5*7*12 = 1680.
		

Crossrefs

Cf. A066417.

Programs

A192267 Anti-deficient numbers.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 16, 19, 24, 26, 29, 34, 36, 44, 51, 54, 61, 64, 69, 79, 89, 96, 106, 114, 131, 134, 139, 141, 146, 156, 159, 166, 169, 174, 191, 194, 201, 209, 211, 216, 219, 224, 226, 236, 239, 244, 246, 251, 254, 261, 271, 274, 289, 296, 299, 309, 316
Offset: 1

Views

Author

Paolo P. Lava, Jun 28 2011

Keywords

Comments

An anti-deficient number is a number n for which sigma*(n) < n, where sigma*(n) is the sum of the anti-divisors of n. Like A005100 but using anti-divisors. There are only 22 anti-deficient numbers less than 100, 159 less than 1000 and 1547 less than 10000. From an empirical observation it seems that the anti-deficient are approximately less than 18% of the anti-abundant.

Examples

			24 is anti-deficient because its anti-divisors are 7, 16 and their sum is 23 < 24.
		

Crossrefs

Programs

Formula

A000027 = A073930 UNION {this set} UNION A192268.

Extensions

Edited by Ray Chandler, Dec 05 2011

A214842 Anti-multiply-perfect numbers. Numbers n for which sigma*(n)/n is an integer, where sigma*(n) is the sum of the anti-divisors of n.

Original entry on oeis.org

1, 2, 5, 8, 41, 56, 77, 946, 1568, 2768, 5186, 6874, 8104, 17386, 27024, 84026, 167786, 2667584, 4775040, 4921776, 27914146, 505235234, 3238952914, 73600829714, 455879783074, 528080296234, 673223621664, 4054397778846, 4437083907194, 4869434608274, 6904301600914, 7738291969456
Offset: 1

Views

Author

Paolo P. Lava, Mar 08 2013

Keywords

Comments

A073930 and A073931 are subsets of this sequence.
Like A007691 but using sigma*(n) (A066417) instead of sigma(n) (A000203).
Tested up to 167786. Additional terms are 2667584, 4775040, 4921776, 27914146, 505235234, 3238952914, 73600829714 but there may be missing terms among them.

Examples

			Anti-divisors of 77 are 2, 3, 5, 9, 14, 17, 22, 31, 51. Their sum is 154 and 154/77=2.
		

Crossrefs

Programs

  • Maple
    A214842:= proc(q) local a,k,n;
    for n from 1 to q do
      a:=0; for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then a:=a+k; fi; od;
      if type(a/n,integer) then print(n); fi; od; end:
    A214842(10^10);
  • Mathematica
    a066417[n_Integer] := Total[Cases[Range[2, n - 1], _?(Abs[Mod[n, #] - #/2] < 1 &)]]; a214842[n_Integer] := Select[Range[n], IntegerQ[a066417[#]/#] &];
    a214842[1200] (* Michael De Vlieger, Aug 08 2014 *)
  • PARI
    sad(n) = vecsum(select(t->n%t && tA066417
    isok(n) = denominator(sad(n)/n) == 1; \\ Michel Marcus, Oct 12 2019
  • Python
    A214842 = [n for n in range(1,10**4) if not (sum([d for d in range(2,n,2) if n%d and not 2*n%d])+sum([d for d in range(3,n,2) if n%d and 2*n%d in [d-1,1]])) % n]
    # Chai Wah Wu, Aug 12 2014
    

Extensions

Verified there are no missing terms up to a(24) by Donovan Johnson, Apr 13 2013
a(25)-a(27) by Jud McCranie, Aug 31 2019
a(28)-a(32) by Jud McCranie, Oct 10 2019

A066418 Numbers k for which phi(k) + anti-phi(k) = k.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 12, 15, 27, 30, 40, 44, 57, 117, 128, 171, 236, 399, 408, 510, 1623, 3597, 3915, 4616, 4684, 7335, 10197, 10768, 14144, 32768, 39387, 76035, 77097, 106605, 162450, 196080, 219966, 391696
Offset: 1

Views

Author

Jon Perry, Dec 28 2001

Keywords

Comments

Anti-phi(n) (A066452) is the number of numbers coprime to all the anti-divisors of n.
See A066272 for definition of anti-divisor.

Examples

			The anti-divisors of 7 are 1, 2, 3 and 5. Therefore of the integer 1-6, only 1 is coprime to 2, 3 and 5, therefore anti-phi(7)=1. phi(7)=6, therefore anti-phi(7)+phi(7)=7
		

Crossrefs

Extensions

a(21)-a(34) from Nathaniel Johnston, Apr 20 2011
a(35)-a(39) from Amiram Eldar, Jan 12 2020

A073956 Palindromes whose sum of anti-divisors is palindromic.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 242, 252, 323, 434, 727, 4774, 32223, 42024, 43234, 46864, 64946, 70607, 4855584, 4942494, 6125216, 6265626, 149939941, 188737881, 241383142, 389181983, 470212074, 27685458672, 42685658624, 45625352654, 61039793016
Offset: 1

Views

Author

Jason Earls, Sep 03 2002

Keywords

Comments

See A066272 for definition of anti-divisor.

Crossrefs

Cf. A002113 (palindromes), A066272, A066417.

Programs

  • Python
    from itertools import chain
    def is_palindrome(x):
        return x == x[::-1]
    A073956 = sorted([n for n in chain(map(lambda x:int(str(x)+str(x)[::-1]),range(1,10**2)),map(lambda x:int(str(x)+str(x)[-2::-1]), range(1,10**3))) if is_palindrome(str(int(sum([d for d in range(2,n,2) if n%d and not 2*n%d]))+int(sum([d for d in range(3,n,2) if n%d and 2*n%d in [d-1,1]]))))]) # Chai Wah Wu, Aug 09 2014

Extensions

a(21)-a(33) from Donovan Johnson, Mar 30 2010

A093396 Denominators of n divided by the product of the anti-divisors of n.

Original entry on oeis.org

2, 3, 6, 2, 30, 15, 4, 42, 42, 10, 270, 54, 8, 33, 2310, 280, 78, 78, 8, 4050, 4050, 14, 1428, 102, 440, 6270, 114, 32, 7938, 257985, 520, 138, 552, 16, 11250, 866250, 616, 1458, 1458, 2720, 14790, 174, 131040, 16926, 17670, 190, 39204, 78408, 8, 2315250
Offset: 3

Views

Author

Lior Manor, Mar 28 2004

Keywords

Comments

See A066272 for definition of anti-divisor.

Examples

			The anti-divisors of 18 are 4, 5, 7, 12. Hence a(18) = 4*5*7*12/GCD(4*5*7*12, 18) = 280.
		

Crossrefs

Cf. A066417, A091507, A093394, A093395 (numerators).

Programs

  • Python
    import numpy as np
    from sympy.ntheory.factor_ import antidivisors
    def a093396(k):
            return (m:=np.prod(antidivisors(k), dtype=object))//np.gcd(m,k, dtype=object)
    {print(a093396(k), end = ', ') for k in range(3,10**2)} # Dumitru Damian, Oct 16 2023

Formula

a(n) = A091507(n)/GCD(n, A091507(n))

Extensions

Name changed by Franklin T. Adams-Watters, Aug 21 2013

A210732 Numbers n for which sigma*(n)=sigma*(x)+sigma*(y), where n=x+y and sigma*(n) is the sum of the anti-divisors of n.

Original entry on oeis.org

6, 9, 15, 18, 21, 24, 27, 30, 31, 33, 37, 39, 43, 44, 46, 47, 53, 56, 57, 62, 65, 66, 70, 73, 74, 75, 76, 78, 81, 83, 86, 88, 90, 91, 92, 93, 97, 99, 102, 103, 106, 107, 109, 110, 114, 116, 117, 118, 119, 121, 122, 123, 125, 126, 127, 129, 131, 133, 135, 136
Offset: 3

Views

Author

Paolo P. Lava, May 10 2012

Keywords

Comments

Similar to A211223 but using anti-divisors.

Examples

			sigma*(127)=sigma*(45)+sigma*(82) that is 212=86+126.
In more than one way:
sigma*(133)=sigma*(50)+sigma*(83)=sigma*(52)+sigma*(81) that is
204=80+124=94+110.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A210732:=proc(q)
    local a,b,c,i,j,k,n;
    for n from 3 to q do
      a:=0;
      for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then a:=a+k; fi; od;
      for i from 1 to trunc(n/2) do
       b:=0; c:=0;
       for k from 2 to i-1 do if abs((i mod k)-k/2)<1 then b:=b+k; fi; od;
       for k from 2 to n-i-1 do if abs(((n-i) mod k)-k/2)<1 then c:=c+k; fi; od;
       if a=b+c then print(n); break; fi;
      od;
    od; end:
    A210732(10000);

A240979 Sum of unitary anti-divisors of n.

Original entry on oeis.org

0, 0, 2, 3, 5, 0, 10, 8, 2, 10, 12, 5, 19, 12, 2, 14, 28, 12, 18, 16, 2, 32, 34, 7, 29, 20, 18, 38, 24, 0, 42, 58, 20, 26, 28, 0, 50, 66, 20, 39, 41, 22, 56, 32, 22, 54, 60, 24, 58, 56, 2, 86, 88, 0, 42, 40, 30, 92, 90, 35, 57, 74, 32, 46, 48, 26, 132, 104, 2
Offset: 1

Views

Author

Paolo P. Lava, Aug 06 2014

Keywords

Comments

For unitary anti-divisors of n are intended all the anti-divisors of n which are coprime to n.

Crossrefs

Programs

Formula

Anti-divisors of 14 are 3, 4, 9. Anti-divisors coprime to 14 are 3 and 9 and therefore a(14) = 3 + 9 = 12.
Previous Showing 11-20 of 77 results. Next