cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A381807 Number of multisets that can be obtained by choosing a constant partition of each m = 0..n and taking the multiset union.

Original entry on oeis.org

1, 1, 2, 4, 12, 24, 92, 184, 704, 2016, 7600, 15200, 80664, 161328, 601696, 2198824, 9868544, 19737088, 102010480, 204020960
Offset: 0

Views

Author

Gus Wiseman, Mar 13 2025

Keywords

Comments

A constant partition is a multiset whose parts are all equal. There are A000005(n) constant partitions of n.

Examples

			The a(1) = 1 through a(4) = 12 multisets:
  {1}  {1,2}    {1,2,3}        {1,2,3,4}
       {1,1,1}  {1,1,1,3}      {1,1,1,3,4}
                {1,1,1,1,2}    {1,2,2,2,3}
                {1,1,1,1,1,1}  {1,1,1,1,2,4}
                               {1,1,1,2,2,3}
                               {1,1,1,1,1,1,4}
                               {1,1,1,1,1,2,3}
                               {1,1,1,1,2,2,2}
                               {1,1,1,1,1,1,1,3}
                               {1,1,1,1,1,1,2,2}
                               {1,1,1,1,1,1,1,1,2}
                               {1,1,1,1,1,1,1,1,1,1}
		

Crossrefs

The number of possible choices was A066843.
Multiset partitions into constant blocks: A006171, A279784, A295935.
Choosing prime factors: A355746, A355537, A327486, A355744, A355742, A355741.
Choosing divisors: A355747, A355733.
Sets of constant multisets with distinct sums: A381635, A381636, A381716.
Strict instead of constant partitions: A381808, A058694, A152827.
A000041 counts integer partitions, strict A000009, constant A000005.
A000688 counts multiset partitions into constant blocks.
A050361 and A381715 count multiset partitions into constant multisets.
A066723 counts partitions coarser than {1..n}, primorial case of A317141.
A265947 counts refinement-ordered pairs of integer partitions.
A321470 counts partitions finer than {1..n}, primorial case of A300383.

Programs

  • Mathematica
    Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@Range[n]]]],{n,0,10}]

Formula

Primorial case of A381453: a(n) = A381453(A002110(n)).

Extensions

a(16)-a(19) from Christian Sievers, Jun 04 2025

A381808 Number of multisets that can be obtained by choosing a strict integer partition of m for each m = 0..n and taking the multiset union.

Original entry on oeis.org

1, 1, 1, 2, 4, 12, 38, 145, 586, 2619, 12096, 58370, 285244, 1436815, 7281062, 37489525, 193417612
Offset: 0

Views

Author

Gus Wiseman, Mar 14 2025

Keywords

Examples

			The a(1) = 1 through a(5) = 12 multisets:
  {1}  {1,2}  {1,2,3}    {1,2,3,4}      {1,2,3,4,5}
              {1,1,2,2}  {1,1,2,2,4}    {1,1,2,2,4,5}
                         {1,1,2,3,3}    {1,1,2,3,3,5}
                         {1,1,1,2,2,3}  {1,1,2,3,4,4}
                                        {1,2,2,3,3,4}
                                        {1,1,1,2,2,3,5}
                                        {1,1,1,2,2,4,4}
                                        {1,1,1,2,3,3,4}
                                        {1,1,2,2,2,3,4}
                                        {1,1,2,2,3,3,3}
                                        {1,1,1,1,2,2,3,4}
                                        {1,1,1,2,2,2,3,3}
		

Crossrefs

Set systems: A050342, A116539, A296120, A318361.
The number of possible choices was A152827, non-strict A058694.
Set multipartitions with distinct sums: A279785, A381718.
Choosing prime factors: A355746, A355537, A327486, A355744, A355742, A355741.
Choosing divisors: A355747, A355733.
Constant instead of strict partitions: A381807, A066843.
A000041 counts integer partitions, strict A000009, constant A000005.
A066723 counts partitions coarser than {1..n}, primorial case of A317141.
A265947 counts refinement-ordered pairs of integer partitions.
A321470 counts partitions finer than {1..n}, primorial case of A300383.

Programs

  • Mathematica
    Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@Range[n]]]],{n,0,10}]

Extensions

a(12)-a(16) from Christian Sievers, Jun 04 2025

A109361 a(n) = Product_{k=1..n} sigma(k)/d(k), where sigma(k) = Sum_{j|k} j and d(k) = Sum_{j|k} 1. Set a(n) = 0 if the corresponding product is not an integer (e.g., for n=2 and n=10).

Original entry on oeis.org

1, 0, 3, 7, 21, 63, 252, 945, 4095, 0, 110565, 515970, 3611790, 21670740, 130024440, 806151528, 7255363752, 47159864388, 471598643880, 3301190507160, 26409524057280, 237685716515520, 2852228598186240, 21391714486396800
Offset: 1

Views

Author

Leroy Quet, Aug 22 2005

Keywords

Comments

The product at n = 2 is the noninteger 1.5. The product at n = 10 is the noninteger 18427.5. Jack Brennen's observed that the only values which are not integers occur when n = 2 or 10, for n < 5000. Are all products for n >= 11 integers?
No other nonintegers found up to 200000. - Michel Marcus, Sep 14 2015
No other nonintegers up to 3000000. - Robert Israel, Jan 22 2018

Examples

			a(4) = 1 * 3 * 4 * 7 /(1 * 2 * 2 * 3) = 7.
		

Crossrefs

Programs

  • Maple
    p:= 1: A[1]:= 1:
    for n from 2 to 50 do
      p:= p * numtheory:-sigma(n)/numtheory:-tau(n);
      if p::integer then A[n]:= p else A[n]:= 0 fi
    od:
    seq(A[n],n=1..50); # Robert Israel, Jan 22 2018
  • Mathematica
    Table[If[IntegerQ[Product[DivisorSigma[1, k]/Length[Divisors[k]], {k, 1, n}]], Product[DivisorSigma[1, k]/Length[Divisors[k]], {k, 1, n}], 0], {n, 1, 30}] (* Stefan Steinerberger, Oct 24 2007 *)
  • PARI
    a(n) = my(q = prod(k=1, n, sigma(k)/numdiv(k))); if (denominator(q)==1, q, 0); \\ Michel Marcus, Sep 14 2015

Formula

Product_{k=1..n} sigma(k)/d(k) = Product_{p=primes} Product_{k>=1} ((p^(k+1)-1)*k/((p^k -1)(k+1)))^floor(n/p^k).
a(n) = A066780(n)/A066843(n) if this is an integer, else 0. - Michel Marcus, Sep 14 2015

Extensions

More terms from Stefan Steinerberger, Oct 24 2007

A175334 a(n) is the smallest positive divisor of Product_{k=1..n} d(k) that does not yet occur in the sequence, where d(k) is the number of positive divisors of k.

Original entry on oeis.org

1, 2, 4, 3, 6, 8, 12, 16, 9, 18, 24, 27, 32, 36, 48, 5, 10, 15, 20, 30, 40, 45, 54, 60, 64, 72, 80, 81, 90, 96, 108, 120, 128, 135, 144, 160, 162, 180, 192, 216, 240, 243, 256, 270, 288, 320, 324, 25, 50, 75, 100, 150, 200, 225, 300, 360, 384, 400, 405, 432, 450, 480
Offset: 1

Views

Author

Leroy Quet, Apr 14 2010

Keywords

Comments

This sequence is a permutation of the positive integers.

Crossrefs

Cf. A066843.

Programs

  • Maple
    From R. J. Mathar, Aug 31 2010: (Start)
    A066843 := proc(n) option remember; if n <= 2 then n; else procname(n-1) * numtheory[tau](n) ; end if; end proc:
    A175334 := proc(n) option remember ; dvs := sort(convert(numtheory[divisors](A066843(n)),list)) ; for d in dvs do wrks := true; for i from 1 to n-1 do if procname(i) = d then wrks := false; break; end if; end do: if wrks then return d; end if; end do: end proc:
    seq(A175334(n),n=1..90) ; (End)

Extensions

More terms from R. J. Mathar, Aug 31 2010

A195349 Numbers n such that Sum_{k=1..n} d(k) divides Product_{k=1..n} d(k), where d(k) is the number of divisors of k.

Original entry on oeis.org

1, 7, 19, 41, 57, 64, 68, 133, 145, 149, 164, 235, 267, 291, 317, 336, 358, 419, 433, 503, 528, 566, 599, 612, 659, 726, 801, 927, 1017, 1035, 1077, 1118, 1190, 1206, 1213, 1281, 1297, 1309, 1320, 1323, 1367, 1446, 1473, 1485, 1516, 1595, 1611, 1634, 1941
Offset: 1

Views

Author

Carl Najafi, Sep 16 2011

Keywords

Comments

d(k) is sometimes called tau(k) or sigma_0(k). Is this sequence infinite?

Crossrefs

Programs

  • Mathematica
    t = {}; a = 0; b = 1; Do[a = a + DivisorSigma[0, n]; b = b*DivisorSigma[0, n]; If[Mod[b, a] == 0, AppendTo[t, n]], {n, 2000}]; t (* T. D. Noe, Sep 16 2011 *)
    With[{c=DivisorSigma[0,Range[2000]]},Position[Thread[{FoldList[ Times,c], Accumulate[ c]}],?(Divisible[#[[1]],#[[2]]]&),1,Heads->False]] // Flatten (* _Harvey P. Dale, Apr 14 2019 *)
  • Python
    from sympy import divisor_count
    A195349_list, s, p = [], 0, 1
    for k in range(1,10**4):
        d = divisor_count(k)
        s += d
        p *= d
        if p % s == 0:
            A195349_list.append(k) # Chai Wah Wu, Oct 09 2021

A074740 a(n) = n!*2^(n-1)/Product_{k=1..n} tau(k) where tau = A000005.

Original entry on oeis.org

1, 2, 6, 16, 80, 240, 1680, 6720, 40320, 201600, 2217600, 8870400, 115315200, 807206400, 6054048000, 38745907200, 658680422400, 3952082534400, 75089568153600, 500597121024000, 5256269770752000, 57818967478272000, 1329836252000256000, 7979017512001536000
Offset: 1

Views

Author

Benoit Cloitre, Sep 05 2002

Keywords

Comments

Appears to be an integer for n >= 1.

Crossrefs

Programs

  • Mathematica
    FoldList[Times, Array[2*#/DivisorSigma[0, #]&, 24]] / 2 (* Amiram Eldar, May 04 2025 *)
  • PARI
    a(n) = n!*2^(n-1)/prod(k=1, n, numdiv(k)); \\ Michel Marcus, Jan 09 2021

Formula

a(n) = A002866(n) / A066843(n). - Michel Marcus, Jan 09 2021 [Corrected by Georg Fischer, Dec 13 2022]

A333121 a(1) = 1; a(n+1) = Product_{d|n} (1 + a(d)).

Original entry on oeis.org

1, 2, 6, 14, 90, 182, 7686, 15374, 1383750, 19372514, 10577393190, 21154786382, 2438935322096070, 4877870644192142, 224977149851430019446, 286620888910721844775478, 396611655030211352708069066250, 793223310060422705416138132502, 8436334593920261958919014477018674175558
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 08 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Product[1 + a[d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 19}]

A334764 a(n) = Product_{k=1..n} d(2*k - 1), where d() is the number of divisors function A000005.

Original entry on oeis.org

1, 2, 4, 8, 24, 48, 96, 384, 768, 1536, 6144, 12288, 36864, 147456, 294912, 589824, 2359296, 9437184, 18874368, 75497472, 150994944, 301989888, 1811939328, 3623878656, 10871635968, 43486543872, 86973087744, 347892350976, 1391569403904, 2783138807808, 5566277615616, 33397665693696, 133590662774784
Offset: 1

Views

Author

Ctibor O. Zizka, May 10 2020

Keywords

Examples

			a(3) = d(1)*d(3)*d(5) = 1*2*2 = 4.
		

Crossrefs

Programs

  • Mathematica
    Rest @ FoldList[Times, 1, DivisorSigma[0, Range[1, 50, 2]]] (* Amiram Eldar, May 10 2020 *)
  • PARI
    a(n) = prod(k=1, n, numdiv(2*k-1)); \\ Michel Marcus, May 10 2020

A334767 a(n) = Product_{k=1..n} d(2*k), where d() is the number of divisors function A000005.

Original entry on oeis.org

2, 6, 24, 96, 384, 2304, 9216, 46080, 276480, 1658880, 6635520, 53084160, 212336640, 1274019840, 10192158720, 61152952320, 244611809280, 2201506283520, 8806025134080, 70448201072640, 563585608581120, 3381513651486720, 13526054605946880
Offset: 1

Views

Author

Ctibor O. Zizka, May 10 2020

Keywords

Examples

			a(4) = d(2)*d(4)*d(6)*d(8) = 2*3*4*4 = 96.
		

Crossrefs

Programs

  • Mathematica
    Rest @ FoldList[Times, 1, DivisorSigma[0, Range[2, 40, 2]]] (* Amiram Eldar, May 10 2020 *)
  • PARI
    a(n) = prod(k=1, n, numdiv(2*k)); \\ Michel Marcus, May 10 2020
Previous Showing 11-19 of 19 results.