A305105
G.f.: Sum_{k>=1} x^(2*k-1)/(1-x^(2*k-1)) * Product_{k>=1} (1+x^k)/(1-x^k).
Original entry on oeis.org
0, 1, 3, 8, 17, 34, 64, 114, 195, 325, 526, 832, 1292, 1970, 2958, 4384, 6413, 9276, 13283, 18836, 26478, 36924, 51096, 70210, 95844, 130019, 175350, 235192, 313802, 416618, 550540, 724250, 948719, 1237732, 1608508, 2082600, 2686857, 3454590, 4427144, 5655652
Offset: 0
-
nmax = 50; CoefficientList[Series[Sum[x^(2*k-1)/(1-x^(2*k-1)), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A325771
Rectangular array: row n shows the number of parts in all partitions of n that are == k (mod 2), for k = 0, 1.
Original entry on oeis.org
0, 1, 1, 2, 1, 5, 4, 8, 5, 15, 11, 24, 15, 39, 28, 58, 38, 90, 62, 130, 85, 190, 131, 268, 177, 379, 258, 522, 346, 722, 489, 974, 648, 1317, 890, 1754, 1168, 2330, 1572, 3058, 2042, 4010, 2699, 5200, 3475, 6731, 4532, 8642, 5783, 11068, 7446, 14076, 9430
Offset: 1
First 15 rows:
0 1
1 2
1 5
4 8
5 15
11 24
15 39
28 58
38 90
62 130
85 190
131 268
177 379
258 522
346 722
-
f[n_] := Mod[Flatten[IntegerPartitions[n]], 2];
Table[Count[f[n], k], {n, 1, 40}, {k, 0, 1}] (* A325771 array *)
Flatten[%] (* A325771 sequence *)
A090868
Number of partitions of n such that the set of odd parts has only one element.
Original entry on oeis.org
1, 1, 3, 2, 6, 5, 11, 8, 20, 15, 32, 24, 51, 39, 80, 58, 119, 90, 175, 130, 255, 190, 361, 268, 508, 379, 706, 522, 967, 722, 1313, 974, 1771, 1317, 2363, 1754, 3131, 2330, 4123, 3058, 5388, 4010, 7001, 5200, 9053, 6731, 11631, 8642, 14878, 11068, 18944, 14076
Offset: 1
-
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t, 1, 0),
`if`(i<1, 0, add(b(n-i*j, i-1, t or j>0 and i::odd),
j=0..`if`(t and i::odd, 0, n/i))))
end:
a:= n-> b(n$2, false):
seq(a(n), n=1..60); # Alois P. Heinz, Jun 30 2016
-
first Needs["DiscreteMath`Combinatorica`"], then f[n_] := Count[ Plus @@@ Mod[ Union /@ Partitions[n], 2], 1]; Table[ f[n], {n, 1, 51}] (* Robert G. Wilson v, Feb 16 2004 *)
A102289
Total number of odd lists in all sets of lists, cf. A000262.
Original entry on oeis.org
0, 1, 2, 15, 76, 665, 5286, 56287, 597080, 7601841, 99702730, 1484554511, 23049638052, 393702612745, 7036703742446, 135702811542495, 2737989749177776, 58848546456947297, 1321063959370833810, 31310238786268648591, 773291778432688011260, 20031956775840631151481
Offset: 0
-
G:=(x/(1-x^2))*exp(x/(1-x)): Gser:=series(G,x=0,25): seq(n!*coeff(Gser,x^n),n=1..22); # Emeric Deutsch
# second Maple program:
b:= proc(n) option remember; `if`(n=0, [1, 0], add(
(p-> p+`if`(j::odd, [0, p[1]], 0))(b(n-j)*
binomial(n-1, j-1)*j!), j=1..n))
end:
a:= n-> b(n, 0)[2]:
seq(a(n), n=0..25); # Alois P. Heinz, May 10 2016
-
Rest[CoefficientList[Series[x/(1-x^2)*E^(x/(1-x)), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Sep 29 2013 *)
nxt[{n_,a_,b_,c_}]:={n+1,b,c,(n+1)*c+(n+1)^2*b-(n-1)^2 (n+1)*a}; NestList[ nxt,{2,0,1,2},30][[All,2]] (* Harvey P. Dale, Jan 13 2019 *)
A102290
Total number of even lists in all sets of lists, cf. A000262.
Original entry on oeis.org
0, 0, 2, 6, 60, 380, 3990, 37002, 450296, 5373720, 76018410, 1096730030, 17814654132, 299645294676, 5511836578430, 105550556136690, 2171244984679920, 46545825736022192, 1059273836225051346, 25100215228045842390, 626204775725372971820, 16239127347086448236460
Offset: 0
-
l:= func< n,b | Evaluate(LaguerrePolynomial(n), b) >;
[0,0]cat[Factorial(n)*(&+[(-1)^(n+j)*l(j,-1): j in [0..n-2]]): n in [2..30]]; // G. C. Greubel, Mar 09 2021
-
Gser:=series(x^2*exp(x/(1-x))/(1-x^2),x=0,22):seq(n!*coeff(Gser,x^n),n=1..21); # Emeric Deutsch
# second Maple program:
b:= proc(n) option remember; `if`(n=0, [1, 0], add(
(p-> p+`if`(j::even, [0, p[1]], 0))(b(n-j)*
binomial(n-1, j-1)*j!), j=1..n))
end:
a:= n-> b(n, 0)[2]:
seq(a(n), n=0..25); # Alois P. Heinz, May 10 2016
-
Rest[CoefficientList[Series[x^2/(1-x^2)*E^(x/(1-x)), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Sep 29 2013 *)
Table[If[n<2, 0, n!*Sum[(-1)^(n-j)*LaguerreL[j, -1], {j,0,n-2}]], {n,0,30}] (* G. C. Greubel, Mar 09 2021 *)
-
[0,0]+[factorial(n)*sum((-1)^(n+j)*gen_laguerre(j,0,-1) for j in (0..n-2)) for n in (2..30)] # G. C. Greubel, Mar 09 2021
A308230
Irregular triangle: row n shows the alternating sums of partitions of n when the parts are arranged in nonincreasing order and the partitions are arranged lexicographically from [n] to [1,1,1,...,1].
Original entry on oeis.org
1, 2, 0, 3, 1, 1, 4, 2, 0, 2, 0, 5, 3, 1, 3, 1, 1, 1, 6, 4, 2, 4, 0, 2, 2, 2, 0, 2, 0, 7, 5, 3, 5, 1, 3, 3, 1, 3, 1, 3, 1, 1, 1, 1, 8, 6, 4, 6, 2, 4, 4, 0, 2, 4, 2, 4, 2, 0, 2, 2, 2, 0, 2, 0, 2, 0, 9, 7, 5, 7, 3, 5, 5, 1, 3, 5, 3, 5, 1, 3, 1, 3, 3, 3, 3, 1
Offset: 1
First 8 rows:
1
2 0
3 1 1
4 2 0 2 0
5 3 1 3 1 1 1
6 4 2 4 0 2 2 2 0 2 0
7 5 3 5 1 3 3 1 3 1 3 1 1 1 1
8 6 4 6 2 4 4 0 2 4 2 4 2 0 2 2 2 0 2 0 2 0
Row 5 comes from arranging the 7 partitions of 5 is this order:
[5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], [1,1,1,1,1] and taking alternating sums: 5, 4-1, 3-1, 3-1+1, 2-2+1, 2-1+1-1, 1-1+1-1.
-
r[n_] := Map[Total[Map[Total, {Take[##], Drop[##]} &[#, {1, -1, 2}] {1, -1}]] &, IntegerPartitions[n]]; Column[Table[r[n], {n, 10}]] (* Peter J. C. Moses, May 15 2019 *)
A188139
Triangle by rows, A027293 * A129372 as infinite lower triangular matrices.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 4, 2, 1, 1, 8, 3, 2, 1, 1, 11, 6, 3, 2, 1, 1, 19, 8, 5, 3, 2, 1, 1, 26, 13, 7, 5, 3, 2, 1, 1, 41, 18, 12, 7, 5, 3, 2, 1, 1, 56, 28, 16, 11, 7, 5, 3, 2, 1, 1, 83, 38, 24, 15, 11, 7, 5, 3, 2, 1, 1, 112, 55, 33, 23, 15, 11, 7, 5, 3, 2, 1, 1
Offset: 1
First few rows of the triangle =
.
1,
1, 1
3, 1, 1
4, 2, 1, 1
8, 3, 2, 1, 1
11, 6, 3, 2, 1, 1
19, 8, 5, 3, 2, 1, 1
26, 13, 7, 5, 3, 2, 1, 1
41, 18, 12, 7, 5, 3, 2, 1, 1
56, 28, 16, 11, 7, 5, 3, 2, 1, 1
83, 38, 24, 15, 11, 7, 5, 3, 2, 1, 1
112, 55, 33, 23, 15, 11, 7, 5, 3, 2, 1, 1
160, 74, 47, 31, 22, 15, 11, 7, 5, 3, 2, 1, 1,
...
-
Table[Count[Flatten[IntegerPartitions[n+k]], 2*k], {n,1,15}, {k,1,n}] (* David Scambler, May 24 2012 *)
a(22) ff. corrected and more terms from
Georg Fischer, Jun 10 2023
Comments