cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A305105 G.f.: Sum_{k>=1} x^(2*k-1)/(1-x^(2*k-1)) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 1, 3, 8, 17, 34, 64, 114, 195, 325, 526, 832, 1292, 1970, 2958, 4384, 6413, 9276, 13283, 18836, 26478, 36924, 51096, 70210, 95844, 130019, 175350, 235192, 313802, 416618, 550540, 724250, 948719, 1237732, 1608508, 2082600, 2686857, 3454590, 4427144, 5655652
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2018

Keywords

Comments

Convolution of A066897 and A000009.
Convolution of A067588 and A000041.
Let A(x) = Sum_{k >= 1} x^(2*k-1)/(1 - x^(2*k-1)) * Product_{k >= 1} (1 + x^k)/(1 - x^k). Then A(x) = Sum_{k >= 1} x^(2*k-1)/(1 - x^(2*k-1)) * Product_{k >= 1} (1 + x^k)/(1 + x^k - 2*x^k) == Sum_{k >= 1} x^(2*k-1)/(1 - x^(2*k-1)) (mod 2). It follows from the comment in A001227 by Juri-Stepan Gerasimov, dated Jul 17 2016, that a(n) is odd iff n is a square or twice a square. - Peter Bala, Jan 10 2025

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^(2*k-1)/(1-x^(2*k-1)), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (2*gamma + log(16*n/Pi^2)) * exp(Pi*sqrt(n)) / (16*Pi*sqrt(n)), where gamma is the Euler-Mascheroni constant A001620.

A325771 Rectangular array: row n shows the number of parts in all partitions of n that are == k (mod 2), for k = 0, 1.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 4, 8, 5, 15, 11, 24, 15, 39, 28, 58, 38, 90, 62, 130, 85, 190, 131, 268, 177, 379, 258, 522, 346, 722, 489, 974, 648, 1317, 890, 1754, 1168, 2330, 1572, 3058, 2042, 4010, 2699, 5200, 3475, 6731, 4532, 8642, 5783, 11068, 7446, 14076, 9430
Offset: 1

Views

Author

Clark Kimberling, Jun 05 2019

Keywords

Comments

Row n partitions A006128 into 2 parts, r(n,0) + r(n,1) = p(n) = A006128(n). What is the limiting behavior of r(n,0)/p(n)?

Examples

			First 15 rows:
    0    1
    1    2
    1    5
    4    8
    5   15
   11   24
   15   39
   28   58
   38   90
   62  130
   85  190
  131  268
  177  379
  258  522
  346  722
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Mod[Flatten[IntegerPartitions[n]], 2];
    Table[Count[f[n], k], {n, 1, 40}, {k, 0, 1}]  (* A325771 array *)
    Flatten[%] (* A325771 sequence *)

Formula

(row n) = (A066898(n), A066897(n)).

A090868 Number of partitions of n such that the set of odd parts has only one element.

Original entry on oeis.org

1, 1, 3, 2, 6, 5, 11, 8, 20, 15, 32, 24, 51, 39, 80, 58, 119, 90, 175, 130, 255, 190, 361, 268, 508, 379, 706, 522, 967, 722, 1313, 974, 1771, 1317, 2363, 1754, 3131, 2330, 4123, 3058, 5388, 4010, 7001, 5200, 9053, 6731, 11631, 8642, 14878, 11068, 18944, 14076
Offset: 1

Views

Author

Vladeta Jovovic, Feb 12 2004

Keywords

Crossrefs

Cf. A066897.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t, 1, 0),
          `if`(i<1, 0, add(b(n-i*j, i-1, t or j>0 and i::odd),
           j=0..`if`(t and i::odd, 0, n/i))))
        end:
    a:= n-> b(n$2, false):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jun 30 2016
  • Mathematica
    first Needs["DiscreteMath`Combinatorica`"], then f[n_] := Count[ Plus @@@ Mod[ Union /@ Partitions[n], 2], 1]; Table[ f[n], {n, 1, 51}] (* Robert G. Wilson v, Feb 16 2004 *)

Formula

G.f.: Sum_{m>0} x^(2*m-1)/(1-x^(2*m-1))/Product_{m>0} (1-x^(2*m)).

Extensions

More terms from Robert G. Wilson v, Feb 16 2004

A102289 Total number of odd lists in all sets of lists, cf. A000262.

Original entry on oeis.org

0, 1, 2, 15, 76, 665, 5286, 56287, 597080, 7601841, 99702730, 1484554511, 23049638052, 393702612745, 7036703742446, 135702811542495, 2737989749177776, 58848546456947297, 1321063959370833810, 31310238786268648591, 773291778432688011260, 20031956775840631151481
Offset: 0

Views

Author

Vladeta Jovovic, Feb 19 2005

Keywords

Crossrefs

Programs

  • Maple
    G:=(x/(1-x^2))*exp(x/(1-x)): Gser:=series(G,x=0,25): seq(n!*coeff(Gser,x^n),n=1..22); # Emeric Deutsch
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, [1, 0], add(
          (p-> p+`if`(j::odd, [0, p[1]], 0))(b(n-j)*
            binomial(n-1, j-1)*j!), j=1..n))
        end:
    a:= n-> b(n, 0)[2]:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 10 2016
  • Mathematica
    Rest[CoefficientList[Series[x/(1-x^2)*E^(x/(1-x)), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Sep 29 2013 *)
    nxt[{n_,a_,b_,c_}]:={n+1,b,c,(n+1)*c+(n+1)^2*b-(n-1)^2 (n+1)*a}; NestList[ nxt,{2,0,1,2},30][[All,2]] (* Harvey P. Dale, Jan 13 2019 *)

Formula

E.g.f.: x/(1-x^2)*exp(x/(1-x)).
a(n) = n*a(n-1) + n^2*a(n-2) - (n-2)^2*n*a(n-3). - Vaclav Kotesovec, Sep 29 2013
a(n) ~ sqrt(2)/4 * n^(n+1/4)*exp(2*sqrt(n)-n-1/2) * (1 + 7/(48*sqrt(n))). - Vaclav Kotesovec, Sep 29 2013

Extensions

More terms from Emeric Deutsch, Jun 24 2005
a(0)=0 pepended by Alois P. Heinz, May 10 2016

A102290 Total number of even lists in all sets of lists, cf. A000262.

Original entry on oeis.org

0, 0, 2, 6, 60, 380, 3990, 37002, 450296, 5373720, 76018410, 1096730030, 17814654132, 299645294676, 5511836578430, 105550556136690, 2171244984679920, 46545825736022192, 1059273836225051346, 25100215228045842390, 626204775725372971820, 16239127347086448236460
Offset: 0

Views

Author

Vladeta Jovovic, Feb 19 2005

Keywords

Crossrefs

Programs

  • Magma
    l:= func< n,b | Evaluate(LaguerrePolynomial(n), b) >;
    [0,0]cat[Factorial(n)*(&+[(-1)^(n+j)*l(j,-1): j in [0..n-2]]): n in [2..30]]; // G. C. Greubel, Mar 09 2021
  • Maple
    Gser:=series(x^2*exp(x/(1-x))/(1-x^2),x=0,22):seq(n!*coeff(Gser,x^n),n=1..21); # Emeric Deutsch
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, [1, 0], add(
          (p-> p+`if`(j::even, [0, p[1]], 0))(b(n-j)*
            binomial(n-1, j-1)*j!), j=1..n))
        end:
    a:= n-> b(n, 0)[2]:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 10 2016
  • Mathematica
    Rest[CoefficientList[Series[x^2/(1-x^2)*E^(x/(1-x)), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Sep 29 2013 *)
    Table[If[n<2, 0, n!*Sum[(-1)^(n-j)*LaguerreL[j, -1], {j,0,n-2}]], {n,0,30}] (* G. C. Greubel, Mar 09 2021 *)
  • Sage
    [0,0]+[factorial(n)*sum((-1)^(n+j)*gen_laguerre(j,0,-1) for j in (0..n-2)) for n in (2..30)] # G. C. Greubel, Mar 09 2021
    

Formula

E.g.f.: x^2/(1-x^2)*exp(x/(1-x)).
Recurrence: (n-2)*a(n) = (n-2)*n*a(n-1) + (n-1)^2*n*a(n-2) - (n-3)*(n-2)*(n-1)*n*a(n-3). - Vaclav Kotesovec, Sep 29 2013
a(n) ~ sqrt(2)/4 * n^(n+1/4)*exp(2*sqrt(n)-n-1/2) * (1 - 41/(48*sqrt(n))). - Vaclav Kotesovec, Sep 29 2013
a(n) = n! * Sum_{j=0..n-2} (-1)^(n+j)*LaguerreL(j, -1) for n>1 with a(0)=a(1)=0. - G. C. Greubel, Mar 09 2021

Extensions

More terms from Emeric Deutsch, Mar 27 2005
a(0)=0 prepended by Alois P. Heinz, May 10 2016

A308230 Irregular triangle: row n shows the alternating sums of partitions of n when the parts are arranged in nonincreasing order and the partitions are arranged lexicographically from [n] to [1,1,1,...,1].

Original entry on oeis.org

1, 2, 0, 3, 1, 1, 4, 2, 0, 2, 0, 5, 3, 1, 3, 1, 1, 1, 6, 4, 2, 4, 0, 2, 2, 2, 0, 2, 0, 7, 5, 3, 5, 1, 3, 3, 1, 3, 1, 3, 1, 1, 1, 1, 8, 6, 4, 6, 2, 4, 4, 0, 2, 4, 2, 4, 2, 0, 2, 2, 2, 0, 2, 0, 2, 0, 9, 7, 5, 7, 3, 5, 5, 1, 3, 5, 3, 5, 1, 3, 1, 3, 3, 3, 3, 1
Offset: 1

Views

Author

Clark Kimberling, May 17 2019

Keywords

Comments

Row n consists of A000041(n) numbers, for n >= 1. The numbers in row n have the parity of n. Regarding row sums, see Comments at A066897.

Examples

			First 8 rows:
  1
  2  0
  3  1  1
  4  2  0  2  0
  5  3  1  3  1  1  1
  6  4  2  4  0  2  2  2  0  2  0
  7  5  3  5  1  3  3  1  3  1  3  1  1  1  1
  8  6  4  6  2  4  4  0  2  4  2  4  2  0  2  2  2  0  2  0  2  0
Row 5 comes from arranging the 7 partitions of 5 is this order:
[5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], [1,1,1,1,1] and taking alternating sums: 5, 4-1, 3-1, 3-1+1, 2-2+1, 2-1+1-1, 1-1+1-1.
		

Crossrefs

Programs

  • Mathematica
    r[n_] := Map[Total[Map[Total, {Take[##], Drop[##]} &[#, {1, -1, 2}] {1, -1}]] &, IntegerPartitions[n]]; Column[Table[r[n], {n, 10}]] (* Peter J. C. Moses, May 15 2019 *)

A188139 Triangle by rows, A027293 * A129372 as infinite lower triangular matrices.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 4, 2, 1, 1, 8, 3, 2, 1, 1, 11, 6, 3, 2, 1, 1, 19, 8, 5, 3, 2, 1, 1, 26, 13, 7, 5, 3, 2, 1, 1, 41, 18, 12, 7, 5, 3, 2, 1, 1, 56, 28, 16, 11, 7, 5, 3, 2, 1, 1, 83, 38, 24, 15, 11, 7, 5, 3, 2, 1, 1, 112, 55, 33, 23, 15, 11, 7, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Mar 21 2011

Keywords

Comments

Row sums = A066897: (1, 2, 5, 8, 15, 24, 39,...), total number of odd parts in all partitions of n.
Apparently T(n,k) is the number of (2*k)'s in all the partitions of (n+k), k>=1, e.g. T(7,3) = number of 6's in partitions of 10 = A024790(10). [David Scambler, May 24 2012]

Examples

			First few rows of the triangle =
.
1,
1, 1
3, 1, 1
4, 2, 1, 1
8, 3, 2, 1, 1
11, 6, 3, 2, 1, 1
19, 8, 5, 3, 2, 1, 1
26, 13, 7, 5, 3, 2, 1, 1
41, 18, 12, 7, 5, 3, 2, 1, 1
56, 28, 16, 11, 7, 5, 3, 2, 1, 1
83, 38, 24, 15, 11, 7, 5, 3, 2, 1, 1
112, 55, 33, 23, 15, 11, 7, 5, 3, 2, 1, 1
160, 74, 47, 31, 22, 15, 11, 7, 5, 3, 2, 1, 1,
...
		

Crossrefs

Programs

  • Mathematica
    Table[Count[Flatten[IntegerPartitions[n+k]], 2*k], {n,1,15}, {k,1,n}] (* David Scambler, May 24 2012 *)

Extensions

a(22) ff. corrected and more terms from Georg Fischer, Jun 10 2023
Previous Showing 21-27 of 27 results.