A132030 a(n) = Product_{k=0..floor(log_6(n))} floor(n/6^k), n>=1.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 24, 26, 28, 30, 32, 34, 54, 57, 60, 63, 66, 69, 96, 100, 104, 108, 112, 116, 150, 155, 160, 165, 170, 175, 216, 222, 228, 234, 240, 246, 294, 301, 308, 315, 322, 329, 384, 392, 400, 408, 416, 424, 486, 495, 504, 513, 522, 531, 600
Offset: 1
Keywords
Examples
a(52) = floor(52/6^0)*floor(52/6^1)*floor(52/6^2) = 52*8*1 = 416; a(58) = 522 since 58 = 134_6 and so a(58) = 134_6 * 13_6 * 1_6 = 58*9*1 = 522.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(n) option remember; n*procname(floor(n/6)) end proc: f(0):= 1: seq(f(i),i=1..100); # Robert Israel, Dec 20 2015
-
Mathematica
Table[Product[Floor[n/6^k], {k, 0, Floor[Log[6, n]]}], {n, 1, 100}] (* G. C. Greubel, Dec 20 2015 *)
Formula
Recurrence: a(n)=n*a(floor(n/6)); a(n*6^m)=n^m*6^(m(m+1)/2)*a(n).
a(k*6^m) = k^(m+1)*6^(m(m+1)/2), for 0
Asymptotic behavior: a(n) = O(n^((1+log_6(n))/2)); this follows from the inequalities below.
a(n) <= b(n), where b(n) = n^(1+floor(log_6(n)))/6^((1+floor(log_6(n)))*floor(log_6(n))/2); equality holds for n=k*6^m, 0=0. b(n) can also be written n^(1+floor(log_6(n)))/6^A000217(floor(log_6(n))).
Also: a(n) <= 2^((1-log_6(2))/2)*n^((1+log_6(n))/2) = 1.236766885...*6^A000217(log_6(n)), equality holds for n=2*6^m and for n=3*6^m, m>=0 (consider 2^((1-log_6(2))/2)=3^((1-log_6(3))/2) since 6=2*3).
a(n) > c*b(n), where c = 0.45071262522603913... (see constant A132022).
Also: a(n) > c*(sqrt(2)/2^log_6(sqrt(2)))*n^((1+log_6(n))/2) = 0.557426449...*6^A000217(log_6(n)).
lim inf a(n)/b(n) = 0.45071262522603913..., for n-->oo.
lim sup a(n)/b(n) = 1, for n-->oo.
lim inf a(n)/n^((1+log_6(n))/2) = 0.45071262522603913...*sqrt(2)/2^log_6(sqrt(2)), for n-->oo.
lim sup a(n)/n^((1+log_6(n))/2) = sqrt(3)/3^log_6(sqrt(3))=1.236766885..., for n-->oo.
lim inf a(n)/a(n+1) = 0.45071262522603913... for n-->oo (see constant A132022).
G.f. g(x) satisfies g(x) = (x+2x^2+3x^3+4x^4+5x^5)*(1 + g(x^6)) + 6*(x^6+x^7+x^8+x^9+x^10+x^11)*g'(x^6). - Robert Israel, Dec 20 2015
A132032 Product{0<=k<=floor(log_8(n)), floor(n/8^k)}, n>=1.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 34, 36, 38, 40, 42, 44, 46, 72, 75, 78, 81, 84, 87, 90, 93, 128, 132, 136, 140, 144, 148, 152, 156, 200, 205, 210, 215, 220, 225, 230, 235, 288, 294, 300, 306, 312, 318, 324, 330, 392, 399, 406, 413, 420, 427, 434
Offset: 1
Keywords
Comments
If n is written in base-8 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).
Examples
a(70)=floor(70/8^0)*floor(70/8^1)*floor(70/8^2)=70*8*1=560; For n=75, 75=113(base-8) and so a(75)=113*11*1(base-8)=75*9*1=675.
Crossrefs
Formula
Recurrence: a(n)=n*a(floor(n/8)); a(n*8^m)=n^m*8^(m(m+1)/2)*a(n).
a(k*8^m)=k^(m+1)*8^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_8(n))/2)); this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_8(n)))/8^((1+floor(log_8(n)))*floor(log_8(n))/2); equality holds for n=k*8^m, 0=0. b(n) can also be written n^(1+floor(log_8(n)))/8^A000217(floor(log_8(n))).
Also: a(n)<=3^((1-log_8(3))/2)*n^((1+log_8(n))/2) = 1.295758534...*8^A000217(log_8(n)), equality holds for n=3*8^m, m>=0.
a(n)>c*b(n), where c = 0.46456888368647639098... (see constant A132024).
Also: a(n)>c*2^(1/3)*n^((1+log_8(n))/2)=0.4645688836...*1.25992105...*8^A000217(log_8(n)).
lim inf a(n)/b(n)=0.46456888368647639098..., for n-->oo.
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_8(n))/2)=0.46456888368647639098...*2^(1/3), for n-->oo.
lim sup a(n)/n^((1+log_8(n))/2)=sqrt(3)/3^log_8(sqrt(3))=1.295758534..., for n-->oo.
lim inf a(n)/a(n+1)=0.46456888368647639098... for n-->oo (see constant A132024).
A054900 a(n) = Sum_{j >= 1} floor(n/16^j).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Magma
m:=16; function a(n) // a = A054900, m = 16 if n eq 0 then return 0; else return a(Floor(n/m)) + Floor(n/m); end if; end function; [a(n): n in [0..127]]; // G. C. Greubel, Apr 28 2023
-
Mathematica
a[n_, m_]:= If[n==0, 0, a[Floor[n/m], m] +Floor[n/m]]; Table[a[n, 16], {n,0,127}] (* G. C. Greubel, Apr 28 2023 *)
-
SageMath
m=16 # a = A054900 def a(n): return 0 if (n==0) else a(n//m) + (n//m) [a(n) for n in range(128)] # G. C. Greubel, Apr 28 2023
Formula
a(n) = (n - A053836(n))/15.
From Hieronymus Fischer, Aug 14 2007: (Start)
Recurrence:
a(n) = a(floor(n/16)) + floor(n/16).
a(16*n) = a(n) + n.
a(n*16^m) = a(n) + n*(16^m - 1)/15.
a(k*16^m) = k*(16^m - 1)/15, for 0 <= k < 16, m>=0.
Asymptotic behavior:
a(n) = n/15 + O(log(n)).
a(n+1) - a(n) = O(log(n)) (this follows from the inequalities below).
a(n) <= (n-1)/15; equality holds for powers of 16.
a(n) >= (n-15)/15 - floor(log_16(n)); equality holds for n = 16^m - 1, m > 0.
Limits:
lim inf (n/15 - a(n)) = 1/15, for n --> oo.
lim sup (n/15 - log_16(n) - a(n)) = 0, for n --> oo.
lim sup (a(n+1) - a(n) - log_16(n)) = 0, for n --> oo.
Series:
G.f.: (1/(1-x))*Sum_{k > 0} x^(16^k)/(1-x^(16^k)). (End)
A132023 Decimal expansion of Product_{k>=0} 1-1/(2*7^k).
4, 5, 8, 7, 6, 6, 7, 2, 6, 6, 9, 9, 7, 6, 8, 9, 8, 5, 0, 2, 0, 0, 0, 5, 1, 5, 3, 3, 6, 9, 7, 4, 3, 7, 2, 1, 7, 8, 2, 5, 4, 6, 6, 8, 8, 7, 1, 4, 7, 3, 1, 8, 7, 0, 0, 7, 8, 2, 4, 4, 0, 1, 3, 8, 5, 0, 6, 9, 9, 7, 4, 4, 0, 3, 2, 6, 5, 9, 3, 0, 3, 6, 5, 2, 3, 7, 8, 1, 7, 1, 0, 9, 0, 4, 0, 5, 8, 4, 7, 5, 9, 8, 2
Offset: 0
Examples
0.4587667266997689850200...
Programs
-
Mathematica
digits = 103; NProduct[1-1/(2*7^k), {k, 0, Infinity}, NProductFactors -> 200, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *) RealDigits[QPochhammer[1/2, 1/7], 10, 120][[1]] (* Amiram Eldar, May 08 2023 *)
Formula
Equals lim inf_{n->oo} Product_{k=0..floor(log_7(n))} floor(n/7^k)*7^k/n.
Equals lim inf_{n->oo} A132031(n)/n^(1+floor(log_7(n)))*7^(1/2*(1+floor(log_7(n)))*floor(log_7(n))).
Equals 1/2*exp(-Sum_{n>0} 7^(-n)*Sum_{k|n} 1/(k*2^k)).
Equals Product_{n>=1} (1 - 1/A109808(n)). - Amiram Eldar, May 08 2023
A132025 Decimal expansion of Product_{k>=0} 1-1/(2*9^k).
4, 6, 8, 9, 4, 5, 1, 7, 8, 3, 6, 7, 0, 2, 3, 6, 9, 3, 2, 8, 3, 2, 8, 0, 0, 3, 5, 4, 1, 8, 6, 5, 6, 3, 9, 4, 0, 6, 8, 0, 4, 5, 7, 5, 8, 6, 9, 8, 9, 8, 5, 6, 0, 1, 6, 7, 1, 9, 7, 9, 9, 2, 3, 2, 7, 4, 7, 5, 7, 3, 2, 8, 3, 4, 6, 7, 0, 4, 3, 8, 1, 7, 5, 4, 9, 5, 0, 9, 4, 2, 7, 5, 7, 0, 0, 0, 1, 5, 9, 1, 7, 1, 1
Offset: 0
Examples
0.4689451783670236932832800...
Programs
-
Mathematica
digits = 103; NProduct[1-1/(2*9^k), {k, 0, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *) RealDigits[QPochhammer[1/2, 1/9], 10, 120][[1]] (* Amiram Eldar, May 08 2023 *)
Formula
Equals lim inf_{n->oo} Product_{k=0..floor(log_9(n))} floor(n/9^k)*9^k/n.
Equals lim inf_{n->oo} A132033(n)/n^(1+floor(log_9(n)))*9^(1/2*(1+floor(log_9(n)))*floor(log_9(n))).
Equals (1/2)*exp(-Sum_{n>0} 9^(-n)*Sum_{k|n} 1/(k*2^k)).
Equals Product_{n>=1} (1 - 1/A270369(n)). - Amiram Eldar, May 08 2023
A132021 Decimal expansion of Product_{k>=0} 1-1/(2*5^k).
4, 3, 8, 7, 9, 6, 8, 3, 7, 2, 0, 3, 6, 3, 8, 5, 3, 1, 2, 6, 6, 7, 2, 9, 9, 9, 7, 1, 7, 7, 2, 5, 8, 3, 5, 9, 6, 0, 4, 5, 7, 4, 6, 3, 1, 2, 3, 9, 3, 5, 1, 1, 6, 5, 4, 1, 7, 7, 3, 6, 7, 5, 6, 4, 3, 6, 7, 9, 1, 0, 6, 6, 5, 6, 9, 8, 6, 6, 5, 0, 0, 6, 9, 2, 8, 9, 6, 6, 7, 2, 3, 8, 9, 8, 5, 4, 4, 0, 0, 6, 0, 2, 8
Offset: 0
Examples
0.438796837203638531...
Programs
-
Mathematica
digits = 103; NProduct[1-1/(2*5^k), {k, 0, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *) RealDigits[QPochhammer[1/2, 1/5], 10, 120][[1]] (* Amiram Eldar, May 08 2023 *)
Formula
Equals lim inf_{n->oo} Product_{k=0..floor(log_5(n))} floor(n/5^k)*5^k/n.
Equals lim inf_{n->oo} A132029(n)/n^(1+floor(log_5(n)))*5^(1/2*(1+floor(log_5(n)))*floor(log_5(n))).
Equals (1/2)*exp(-Sum_{n>0} 5^(-n)*Sum_{k|n} 1/(k*2^k)).
Equals Product_{n>=0} (1 - 1/A020729(n)). - Amiram Eldar, May 08 2023
A132031 Product{0<=k<=floor(log_7(n)), floor(n/7^k)}, n>=1.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 28, 30, 32, 34, 36, 38, 40, 63, 66, 69, 72, 75, 78, 81, 112, 116, 120, 124, 128, 132, 136, 175, 180, 185, 190, 195, 200, 205, 252, 258, 264, 270, 276, 282, 288, 343, 350, 357, 364, 371, 378, 385, 448, 456, 464, 472, 480, 488
Offset: 1
Keywords
Comments
If n is written in base-7 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).
Examples
a(52)=floor(52/7^0)*floor(52/7^1)*floor(52/7^2)=52*7*1=364. a(58)=464 since 58=112(base-7) and so a(58)=112*11*1(base-7)=58*8*1=464.
Crossrefs
Programs
-
Mathematica
Table[Times@@Floor[n/7^Range[0,Floor[Log[7,n]]]],{n,70}] (* Harvey P. Dale, Oct 11 2017 *)
Formula
Recurrence: a(n)=n*a(floor(n/7)); a(n*7^m)=n^m*7^(m(m+1)/2)*a(n).
a(k*7^m)=k^(m+1)*7^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_7(n))/2)this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_7(n)))/7^((1+floor(log_7(n)))*floor(log_7(n))/2); equality holds for n=k*7^m, 0=0. b(n) can also be written n^(1+floor(log_7(n)))/7^A000217(floor(log_7(n))).
Also: a(n)<=3^((1-log_7(3))/2)*n^((1+log_7(n))/2)=1.270209197...*7^A000217(log_7(n)), equality holds for n=3*7^m, m>=0.
a(n)>c*b(n), where c=0.4587667266997689850200... (see constant A132023).
Also: a(n)>c*(sqrt(2)/2^log_7(sqrt(2)))*n^((1+log_7(n))/2)=0.4587667266...*1.249972544...*7^A000217(log_7(n)).
lim inf a(n)/b(n)=0.4587667266997689850200..., for n-->oo.
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_7(n))/2)=0.4587667266997689850200...*sqrt(2)/2^log_7(sqrt(2)), for n-->oo.
lim sup a(n)/n^((1+log_7(n))/2)=sqrt(3)/3^log_7(sqrt(3))=1.270209197..., for n-->oo.
lim inf a(n)/a(n+1)=0.4587667266997689850200... for n-->oo (see constant A132023).
A067082 If n = abc...def in decimal notation then the right digit sum function = abc...def + bc...def + c...def + ... + def + ef + f.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 70, 72
Offset: 0
Examples
a(256) = 256 + 56 + 6 = 318.
Programs
-
Mathematica
Table[d = IntegerDigits[n]; rd = 0; While[ Length[d] > 0, rd = rd + FromDigits[d]; d = Drop[d, 1]]; rd, {n, 0, 75} ]
Formula
a(abcd) = abcd+(abcd-1000a)+(abcd-1000a-100b)+(abcd-1000a-100b-10c).
n*length(n)-Sum_{k=1..length(n)} 10^k*floor(n/10^k). - Vladeta Jovovic, Jan 08 2002
Extensions
More terms from Robert G. Wilson v, Jan 07 2002
A071714 Numbers n such that Rd(n) + Ld(n) +/-1 is prime, where Rd and Ld are the right- and left-digital factorial functions.
2, 3, 6, 9, 33, 90, 102, 195, 210, 276, 379, 380, 402, 414, 575, 588, 616, 618, 916, 939, 980, 984, 1110, 1112, 1210, 1314, 1614, 2132, 2136, 2166, 2190, 2280, 2372, 2394, 2438, 2468, 2730, 2780, 3360, 3436, 3510, 3816, 3842, 3940, 3950, 4222, 4236, 4344
Offset: 1
Examples
195 is a term because (195*95*5)+(195*19*1)+1 = 96331 and (195*95*5)+(195*19*1)-1 = 96329 are both prime.
Comments